Database update with specific commands for
procedures

GeneXus

Database update

Using a Transaction Using a Business Component

e AITachon 7~

SELECT l:l % Web Form | Rules | Events | Variables ‘ Patterns |

Attraction

Name Type Description For... | Nullable
‘ == Attraction Attraction
¥ atractionid Id Attraction Id Mo
Forbidden City D AtactionName MName Attraction Name No
- A CountryId Id Country Id Mo
3 ¢ - CountryName MName Country Name
A Cityld Id City Id Yes
China - o CityName MName City Name
- & Categoryld Id Category Id Yes
« CategoryName MName Category Name
2 ¢ o BT S A
Monument

Event 'New Attraction’

&Attra on.AttractionName = "Forbidden City"
CountryId = find(CountryId, Countrylame = "China™)
CityId = find(CityId, CityName = "Beijing")
raction.Categoryld = find(Categoryld, CategoryName = "Monument™)
&attraction.Save()

CONFIRM CANCEL DELETE Commit
Endevent

So far, to update the database data we have used transactions in the 2
ways available to do so:

« Running their screens and entering data in an interactive manner
«Running them as Business Components, through a variable, without
using their screens.

For example, to add a new attraction, in a web panel we could have
placed a button and writing what we see above for its event.

GeneXus’

Another way to update the database

Procedure object DataBase

::' Procedurel = X -

I:I La}fout| Rules | Conditions | Variables

| > |

._.
[

Now we will learn about another option available to make insertions,
modifications and deletions in the database.

We must take into account that what we'll see can only be used in
procedure type objects, unlike the option that used a Business
Component, which could be used from any object.

Only valid in procedures

INSERTION

New Table attributes

Attractionld AttractionName Countryld Cityld Categoryld AttractionPhoto

EndNew

Commit on exit | Yes

Using this command, we can assign values to the attributes of one physical table to insert one record.

Procedures provide a command called New to insert records in a table.

Using this command we can assign values to the attributes of one physical
table.

We're speaking of a table, not of a transaction, because not all the
attributes in a transaction structure are included in the physical table.

For example, if we want to insert an attraction, in the Attraction
transaction many attributes are declared in the structure but are not
physically present in the ATTRACTION table.

Instead, they are in the extended table of the ATTRACTION table. We've
included them in the structure to show them in the form or use them in
the rules.

Attributes of the Attraction table and New

Transaction Attraction Table Attraction

Aftraction X - E Aftraction X -
l:l = Web Form | Rules | Events | Variables | Patterns | I:I Indexes |
Name Type Description Formula | Null... Type Description Formula
B-@ Attraction Attraction

= d Attraction Id Mo AttractionId d Attraction Id

p AttractionName Mame Attraction Mame Mo > AttractionMName Name Attraction Name

- A Countryld d Country Id No CountryId Id Country Id

- ¥ CountryMame Mame Country Name Categoryld d Category Id

- A Categoryld d Category Id Yes ; AttractionPhoto Image Attraction Photo

- o CategoryMame Mame Category Mame : Cityld Id City Id

Q AttractionPhoto Image Attraction Photo Mo

- A Cityld d City Id fes

- o CityMName Mame City Mame

The NEW command only allows assigning values to these
attributes

If we select View/Tables and edit the ATTRACTION table, we'll see only the
attributes that belong to the ATTRACTION table.

We can include these attributes in a New command and assign values to
them. The New command will insert only one record in that table.

In procedures...

INSERTION

new
AttractionName = “Forbidden City"
CountryId = find{ CountryId, CountryName = "China") BASE TABLE
CityId = find({ CityId, CityName = "Beijing")
CategoryId = find(Categoryld, CategoryName = “"Monument")
endnew

ATTRACTION

Attractionld: We don't assign a value to the Attractionld attribute
because it is autonumbered

AttractionPhoto: The record will be inserted anyway, without the attraction
photo

GeneXus will determine the physical table to insert the record, analyzing
the attributes located to the left of the equal sign.

If they all belong to the same physical table, the record will be inserted in
that table. Otherwise, we will be informed that it is not possible to select a
table to make the insertion.

The table found by GeneXus is the base table of the New command. In
this case: ATTRACTION.

Note that we're not assigning an image to the AttractionPhoto attribute. In
this case, the insertion will be made, even though the AttractionPhoto
attribute will not be assigned and the attraction will be created without a
photo.

Also, we could have left the attributes Countryld, Cityld and Categoryld,
which are foreign keys, with no values assigned. Or, rather, instead of
using the Find formula to look for the corresponding IDs, we could type
nonexistent IDs because the New command doesn't check for referential
integrity. For this reason, we must be very careful when programming this
command.

Insertion with New versus BC

Using the NEW clause in Procedures Using Business Components
new Event 'New Attraction’
= 5 = "Eorbi P &attraction.AttractionName = "Forbidden City™
»«ttr‘actxonﬂan_lg rorbiaden ity Gt fattraction.Countryld = find{ CountryId, CountryName = "China")
Countryld = find(Countryld, CountryName = "China") 8Attraction.Cityld = find(Cityld, CityName = "Beijing")
CityId = find(CityId, CityName = “"Beijing") SAttraction.Categoryld = find(Categoryld, CategoryMame = "Monument™)
Categoryld = find(Categoryld, CategoryName="Monument") Eattraction.Save()
endnew Commit

Endevent

Commit on exit | Yes

When running the insertion, GeneXus will only check that no records are
inserted with primary keys that already exist. Also, if there is a unique index
defined over an attribute, it checks that no duplicate values are entered
for this attribute. If this happened, the New command wouldn't do
anything and wouldn't warn the user either. Next, we will see how to
identify this situation and take the corresponding measures. The
unigueness control is the only control it makes, so NO referential integrity
controls are made. Therefore, if we assign a nonexistent Countryld, there
won't be a referential integrity failure, unlike what happens when the
insertion is made through a Business Component. Remember that, in this
case, unigueness and referential integrity controls are made. In addition,
the rules defined in the transaction are triggered.

When the insertion is made using a Business Component, just like it can be
made from any object, we must explicitly run the Commit; that is to say,
give the order to make the database keep the data changed since the last
Commit operation.

Procedures have the property Commit on exit that is set to Yes by default.
What effect does it have? If the procedure accesses the database, a
Commit command will be added at the end of the code with no need for
the developer to indicate it. In fact, it is not written in the object and is
added to the generated program instead. That's why we don't need to
explicitly add a Commit after the New command, unless we want to run
the commit operation immediately.

GeneXus realizes that it has to access the database within a procedure when using New, For
Each to update, delete (operations that we will see later). In these cases, it adds the implicit
Commit; otherwise, it doesn't understand that the database needs to be accessed and
doesn't add it. Therefore, database manipulation operations through business components
will not result in implicit commit.

For this reason, when we type:
&BC.elementl = ...
&BC.element2 = ...
&BC.Save()

it doesn't add the Commit command because it doesn't realize that we want to make an
Insert (not even if we used the Insert method directly). As a consequence, it handles the
Business Component as if it were just any SDT. In this case, the Commit command has to be
written explicitly.

If, within the procedure code, there was also a New, For Each that updates, or Delete, in any
of those cases we wouldn't have to explicitly write the Commit, because it has already
established a connection to the DB. If we only have the previous code in our procedure, then
we would have to add the Commit command explicitly.

Only valid in procedures

INSERTION
New BASE TABLE
CategoryName = "Tourist site”
Endiew CATEGORY

Categoryld (;7)

In a New clause, to create a new record we assign values to the attributes
that belong to a table record.

If we had the above New clause written in a procedure, where we only
assign a value to the CategoryName attribute, obviously the base table will
be CATEGORY, because it is the table where the CategoryName attribute
is physically stored.

Once again, we don't assign a value to the Categoryld attribute because it
is autonumbered.

Only valid in procedures

UPDATE
For each Attraction
Where CityName = 'Beijing’ BASE TABLE
Where CategoryName = 'Monument’
CategoryIld = find(CategoryId, CategoryMame = 'Tourist site') ATTRACTION
Endfor

The attributes of ATTRACTION's extended table can be updated in the For Each command (except the Primary Key)

Now we will see how we can update an existing value in the database.

To replace a value stored in an attribute -of a table record- with another
value, we use a For Each command to access that record and give it the
new value through an assignment.

In the example, the base table of the For Each command is ATTRACTION,
because the base transaction is Attraction and we're running through all
the attractions in Beijing that have the “"Monument” category. We're
changing the category of these ones to “Tourist Site”.

Note that in this example we're updating many records, which are all those
that meet the Where clause conditions. Also, we're updating the value of a
single attribute, but they could be many. Even attributes of the extended
table may be updated; for example, the name of the attraction category,
the name of the attraction country, the name of the attraction city. We will
see this in the following page.

Note that the New command only allows assigning values to attributes
that are physically present in the table, because there we want to insert
only one new record. In the For Each command, by contrast, we're always
positioned in an existing record and from there we can edit all the records
associated through an extended table.

If we had a candidate key (that is to say, a unique index defined over one
of the attributes) and inside the For Each command we were replacing its
value with an existing one for another record, the update would not be

made. So, as we've said for the New command, here we will not see any warning either.
Next, we will see how to capture this case and do something about it.

There's a restriction that doesn't allow changing, inside a For Each command, the primary
key of the table being run through.

Only valid in procedures

UPDATE
Trn Invoice Trn Customer

35 nvoice Invoice =+E customer Customer
¥ 1voicerd id i@ Customerld d
P InvoiceDate Date - 4+ CustomerName MName
2 Customerld Numeric(4.0) CustomerAddress Address
¢ CustomerName Character(20) CustomerPhone Phone
e CustomerTotaPurchases Price CustomerEMail Emiail
¢ InvoiceTotalAmount Price CustomerAddedDate Date

=] Fight Flight i = CustomerVIP Boolean
§ Flightrd d

P FlightAvallableSeats Numeric(4.0)
¢ InvoiceFlightSeatQty Numeric(4.0)
iy FlightFinalPrice Price
» InvoiceFlightAmount Price

For each Invoice
Where InvoiceDate »= &lastDate
if count(InvoiceFlightSeatQty) »>= 5
CustomerVIP = True
endif
Endfor

The travel agency wants to identify those customers that, starting from a
certain date, in the same invoice have purchased more than five flights,
and mark those customers as VIP. To do so, we add the CustomerVIP
attribute to the Customer transaction; this attribute will be stored in the
associated table.

To identify and mark those customers, we will have to run through the
Invoice table and count the flights in each one of them. If that number
exceeds five flights, we must update the value of the CustomerVIP
attribute by setting it to True.

Here the base table of the For Each command is INVOICE, so the Count
formula will only count the flights that belong to this invoice. If they are
more than 5, note that we're updating the value of an attribute of the
CUSTOMER table, which is in the extended table of the table we're
running through.

10

Update using a For Each command vs BC

Using a For Each command in a Procedure Using Business Components
For each Attraction For each Attraction
. _ mposss _m _ g " Where CityName = "Beijing" and CategoryName = "Monument”
where CltyNamel— Beijing” and CategoryName = ". .onLlJrrentl . fAttraction. Load (AttractionId)
CategoryId = find(CategoryId, CategoryName = “"Torist 5ite") &Attraction.Categoryld = find({ CategoryId, CategoryName = "Tourist site")

endfor &Attraction.Save()
Endfor
Commit

Commit on exit | Ves

v Uniqueness control of PK and CK v Uniqueness control of PK and CK
v Rl Control
v Rules

As we've said before, when a For Each command is used inside the
procedure, the only control made by GeneXus will be a uniqueness
control for the primary key and candidate keys.

By contrast, the solution that uses Business Components will also check
for referential integrity. Therefore, if we assigned a nonexistent value to
Categoryld, it would not allow making this update. In addition, it will run
the business rules.

Remember what we've said about the New command for Commit on exit.

11

Procedure to increase prices

[EnterPercentage?* X o® IncreaseFlightPrices = X
Web Form * | Rules I:l Cenditions | Variables I:I Layoutl Rules* | Conditions | Variables
|Enter v| | V|
15 Event Enter l For eachl Flight
2 IncreaseFlightPrices(2Percentage) — 2 FlightPrice = FlightPrice * (1 + &Percentage/180)
: g N ~aE 3:-Endfer

Endevent

L

Layout 5™ | Conditions | Variables |

|. parm(in:&Percentage);

We want to prompt the user to enter a percentage and recalculate the
price of all flights by applying this increase percentage.

To do so, we create a web panel to ask this data from the user, and from
there we invoke a procedure that will effectively update the flights table,
to change the price value according to the percentage received in a
parameter.

To make this update, we use the For Each command to run through the

FLIGHT table and replace the FlightPrice attribute value with the result of
the expression displayed.

12

Comparing alternatives

Using Business Components Using a Procedure

m EnterPercentage? = X

Flight

t.Load (FlightId) - X
©.FlightPrice = :SCFlight.FlightPrice * (1+ cPercentace/100) Web Form * | Rules l:l Conditions | Variables
t.Save()
1t.Success () |Enter v|

If &

Commit
Else
Rollback
Endif
Endfor

Endevent l

oy -
u" IncreaseFlightPrices ~ X

l:l Layout‘ Rules ™ ‘ Cenditions | Variables

A For eachl Flight

1
2] FlightPrice = FlightPrice * (1 + &Percentage/10@)
34- Endfor

Event Enter
IncreaseFlightPrices(&Percentage)
Endevent

L b

Let's compare the two alternatives we use to update the database.

In the first alternative we implemented, in the Enter event of the
EnterPercentage web panel we type the For Each command and update
the database using the Flight transaction as a Business Component.

In the second solution, the Enter event of the EnterPercentage2 web panel
only contains a call to a procedure, which receives the percentage value,
navigates all the flights with a For Each command and, for each one of
them, calculates and assigns the new price.

What are the differences, advantages and disadvantages of solving this in
one way or the other?

13

Example Insert Category + change in Attractions

::' InsertCategorylpdatelttractions X @ CategoriesAndAttractions * X
|:| Layout‘ Rules ‘ Conditions | Variables ‘Web Form | Rules l:l Cenditicns | Variables
1 New 1{- Event 'Do’
2 CategoryName = 'Tourist Site’ 2 &category.CategoryName = "Tourist site”
34t Endnew 3 &category.Save()
4] For each Attraction 4 For each Attraction
5 where CityName = 'Beijing' and CategoryName = 'Monument’ 5 Where CityName = "Beijing” and CategoryName = "Monument"
6 CategoryIld = find(CategoryId, CategoryName = 'Tourist Site') g &attraction.Load(AttractionId)
7{'tEndfor 7 Zattraction.Categoryld = &category.CategoryId
8 fattraction.Save()
] Endfor
10 Commit
11:L Endevent

Exclusivamente en Procedure Puede estar en cualquier objeto

Here we can see both solutions to insert a new category and replace the
category value of certain attractions with this category.

Note that the code in the web panel event is run in any GeneXus object,
and the code in the procedure is only valid inside a procedure object.

Let's examine the procedure:

Since Categoryld is autonumbered, the New command will never fail.
We're using a Find formula to find the ID of the category called “Tourist
Site” that we've just inserted with the New command. If we had made a
mistake when typing the category name, the Find formula would not have
found the record and would have returned an empty value, which is O for
a numeric value. In this case, we would be changing the category ID of the
attractions in Beijing that were monuments to value O. If the Categoryld
attribute didn't accept null values, an inconsistency would be created in
the database. Remember that no referential integrity checks are made
when the For Each command is used to make an update, unlike what
happens when a Business Component is used, because in that case it
would check for referential integrity. In our case, Categoryld accepts null
values, so we won't have any consistency problems when using this
option through a procedure.

Updating values through Business Components is always the safer option,
because they will make the same controls as the New and For Each
commands, and even more: referential integrity checks in addition to the
rules stated in the associated transaction. Consider that, even if you were

14

careful when programming the procedure, its associated reality may change at any time. For
example, the need to add error rules to the transaction that you didn't think of when
programming the procedure. The use of a Business Component guarantees that these rules

will be included in all checks.

14

Only valid in procedures

DELETION:

For each Category
where CategoryName = “Tourist Site”
Delete

Endfor

For each Attraction
Delete
Endfor

For each Category
Delete
Endfor

We've seen how procedures allow us to insert and update records in the
database. Now, let's see how to delete records.

To delete records we have the Delete command that is used inside a For
Each command.

Basically, since the Delete command removes the record from the table
we're positioned in, the For Each command is used to access that record.

In the first example we see that we're navigating the Category table,
filtering by the “Tourist Site” category; therefore, we're only deleting one
record with the Delete command.

But we may have also deleted all the attractions and all the categories (if
we wanted to empty those tables).

If we delete the categories first and the attractions later, since the
database checks for referential integrity by default, when we try to delete
the first category, if it has a related attraction it will fail and the program
will fail too, as we will see next.

15

Using special commands (NEW, FOR EACH, DELETE)

Data validations: only uniqueness, not referential integrity.

Only valid in procedures.

Usando business components:

Data validations: both unigueness and referential integrity.
Transaction rules are triggered.

Valid in any object.

When we use Business Components, the data that is going to be updated
in the database is checked for consistency, and the rules stated in the
transaction being run as a Business Component are run.

Those rules that generate messages, such as msg and error, are also
triggered and the corresponding messages are saved in a collection that
can be run through and printed.

In a procedure, none of these actions are performed.

Something that we've talked about and it's worth mentioning again, is that
even if the For Each command can be used in a web panel, it cannot be
used to change the database directly by assigning values to attributes,
and that it can only be made from a procedure object. It's not possible to
code a New command in a web panel either, or include a Delete
command inside the For Each command. This can only be done in
procedures.

However, in any object, it is possible to change the database using
Business Components.

We must take into account that procedures don't check the data being

assigned for consistency. They only check primary and candidate keys for
uniqueness.

16

GeneXus’

Using special commands (NEW, FOR EACH, DELETE)

We will be responsible for assigning valid and well related data.

=
Inconsistent data -
S ———
ERROR —_—
ERROR

f——— 4
— -

o0 ||

When using these commands to make direct updates in procedures, it is
our responsibility to assign or insert data that is consistent with the rest of
the stored data.

In the previous example of the New command, we can assign any value to
CategoryName because this data is not related to any other tables.

In the example where we updated the attractions category, by contrast,
we were assigning a new value to an attribute that was a foreign key:
Categoryld. If the value assigned didn't exist as a category identifier in the
CATEGORY table, the procedure wouldn't validate it, and that's why we
may be entering inconsistent data.

Since databases check for the consistency of interrelated data, when the
user runs the application and tries to assign an inconsistent value, the
database will reject the operation and the inconsistent data will not be
saved.

However, the program will stop running and this is not user-friendly at all.

Therefore, if we use procedures to update the database, we will be
responsible for assigning valid and well related data.

17

Using special commands (NEW, FOR EACH, DELETE)

If data validations only check for uniqueness: where do we program the actions to run if attempts are made to duplicate the
primary key or candidate key?

new
AttractionName = "Forbidden City™
CountryId = find(CountryId, CountryName = "China™)
CityId = find(CityId, CityName = "Beijing™)
CategoryId = find(CategoryId, CategoryName = "Tourist Site™)
when duplicate

endnew

If AttractionName is a candidate key, that is to say, it can't be repeated,
and we run a New command in order to insert a new record (with
autonumbered ID) by assigning the value “Forbidden City” to
AttractionName and there already exists a record with that value, we can
do something about it, which is to program it inside the When duplicate
clause of the New command.

18

Using special commands (NEW, FOR EACH, DELETE)

Duplication of the primary key or candidate key

for each CreditCard
where CreditCardCode = &creditCardcode
CustomerId = &newlustomerld

when duplicate

endfor

‘=] CreditCard CreditCard
CreditCardCode Code
----- » iCustomerId
----- ¢ CustomerMame Mame
----- 4~ CreditCardLimit Lirmit
t[E=] Customer Customer
L @ Customerld Id
4~ CustomeriMame Mame
= CustomerAddress Address
= CustomerPhone Phone
= CustomerEMail Email

Likewise, suppose that we have two transactions called Customer and
CreditCard that have a 1to 1 relationship: that is to say, Customerld has
been set as a candidate key (through a unique index), and in a procedure
that receives two variables through a parameter -the identifier of a new

customer and the identifier of an existing credit card- a For Each

command is programmed to change that card's customer for the new
one. If the database already has another card for the same customer, the
For Each command will not make the update. If we want to perform an
action in that case, we can use the When duplicate clause.

To learn more about this clause, please visit our wiki:
http://wiki.genexus.com/commuwiki/serviet/wiki?24843,When+duplicate+c

lause.

The attributes included in the When duplicate clause will not be taken into
account when determining the base table of the For Each command in

which they are located.

19

For each sintax

For each BaseTransaction

skip expression; count expression,

order att,, att,, ..., att,[when condition]

order atty, att,, ..., att,[when condition]

using DataSelector(parm,, parm,, ..., parm,)

unique att,, att,, ..., att,

where condition [when condition]

where condition [when condition]

where att IN DataSelector(parm;, parm,, ..., parm,)
blocking N

main code

When duplicate
When none

endfor

The blocking clause allows updating the database in groups of N records,
to reduce the number of database accesses and improve performance.
We won't talk about it in this course. For more information, read the article
here:

http://wiki.genexus.com/commuwiki/servlet/wiki?4837,Blocking+clause+in+
a+%27For+each%27+command.

For more information about the When duplicate clause, which is valid for
both the For Each and New command, click on this link:
http://wiki.genexus.com/commwiki/serviet/wiki?24843, When+duplicate+c
lause.

For the full syntax of the New command, click on this link:
http://wiki.genexus.com/commuwiki/serviet/wiki?6714, New+command.

Remember that the attributes included in the code written inside the

When duplicate clause will not be taken into account when determining
the base table of the For Each command in which they are located.

20

GeneXus

21

