Database Update

Using Business Components

GeneXus’

Business Component

&attraction

) S: 2::::;2%”19 ::rr::;:,:l:l:me Forbidden city Attractionld AttractionName Countryld Cityld Categoryld
- CountryName Countryld 3 Louvre Museum

Cityld CountryName China The Great Wall
- CityName Cityld 1 3 Eiffel Towe
--EIAttra:tlonPhoto Categoryld 2 E Smithsonian Institute

. AttractionAddress CategoryName Monument 6 Matisse Museum

AttractionPhoto Forbidden city
+ AttractionAddress

LOGIC \ /

&attraction.Insert()
&attraction.Update()

&attraction.Delete()

Business Component | True

In the previous video, we were given a detailed overview of familiar
concepts to pave the way for understanding and using business
components.

From the transaction structure with its logic (and by logic we mean
controls for duplicates —not only primary key, but also candidate keys-,
referential integrity, most of its rules and some of its events), a kind of data
type similar to an SDT, but much more powerful, is obtained.

Then, it will be enough to define in almost any program a variable of that
data type and manipulate it, which is what we will see next.

This variable, in its structure, will be handled similarly to an SDT. But it will
also offer methods for doing something specific to a transaction: loading

from the database, inserting, modifying, deleting; all this by executing the
logic of the transaction, and then obtaining the generated messages and

the results of success or failure.

The way to obtain that kind of data in the knowledge base is simply by
turning on the Business Component property of the transaction.

[=

i [P 50
@ KB Explorer

Open:

2 Travelagency

Root Module
GeneXus
R Aiine
T Arport
28 Attraction
F AttractionList
¥ AttractionsByNsme
+¥ AttractionsPerCategory
+» AttractionsReport
3T AttractionWithoutParometers
¥ CategoriesAndTheirAttractionsList
% Cotegory
+* CountriesRanking
.+ CountriesWithMoreThan2Attractions
¥ Country
¥ Customer
5 DataProviderCountries
& Diogram1
&%, Diogram2
&% Disgram3
&5 Disgrams.
&% Disgrams
1 EnterAttractionsFilter
9 Flight
A FlightAmvalAirpont
A\ FlightDepartureAirport
1 Gx00AD
o Gx0081
5 Gx0010
5 Gx0020
1 6x0030
o Gx0040

1 Gx0051

-] Output
C\Modets\Trial TrunkiTravel Agency

3

» Release N
X | [@] StetPoge X 38 Attmction X
| Structure
" Name Type Description Formula
=55 Atiroction Attraction Attraction

§ Attractionid u Attraction Id

P Attractiontiame Name Attraction Name

2 Countryld) Country Id

¥ CountryName Name Country Name

(A New Object X

¢ Ciytiame |

2 Categoryld Select a Category: Select a Type: =)

¥ CategoryName Data Management A = Transacton

lia) attractionPhoto User Interface E=iData Provider i U Rewrite

* Attractionaddress BOM = Data Selector
Chatbots = Data Vi
Resources | b
Documentation ‘i Domain
Extensibility +» Procedure
Deploy & Stuctured Data Type
?epw\g £\ Subtype Group

est
ALL
Defines a program or routine that implements an algorithm. including database access, data updates, and
printing.
Name: [InserCategoryUpdateAmractions
Description Insen Category Update Atractions.
Module/Folder Root Module v
oo

File Edit View Layout Insert Build Knowledge Manager Window Tools Test Help
BIOOD, e

Nuliable

Ho
No

No
No

O/ Properties

DZ- ¥ | Fitter

Name Attraction
Type Attraction
Description Attraction

Logically Deleted Attr

Last Modified Date Tit

x

©|Propeies T Toolbox [Tests Explorer #= Tests Results

We wiill start by creating a simple procedure that we will modify to

implement a more complete requirement later. Let's not pay attention to
the name right now.
We’'ll start with something very simple: suppose we want to insert a new
tourist attraction.

Insert through BC

StatPage X 38 Ammaction X _* InsenCategoryUpdmeAtmctions* X [M] Navigation View X
Pattem:

) Anacton Transaction Attraction_BC Navigation Report

LS| Atraction_BC|

B@Attractmn
¥ Attractiontd

- p AftractionMName

- A Countryld

[

¥ CountryName
- A Cityd
w CityName
A Categoryld
-« CategoryMame
@Attractinnphntn
AftractionAddress

L

Business Component True

=] @ Business Components
@ Attraction

The first thing we must do is create the Business Component of the
Attraction transaction, so that it can be used in any object in the
knowledge base. Therefore, we go to the transaction and among its
properties find the one called Business Component. It is set to False by
default. We change it to True. At first, we don't see any effect. However, if
we save... we see this in the navigation listing.

Insert through BC

If now we go to the procedure and define in it a variable named Attraction,
we see that because we selected a name matching that of the transaction,
a data type of that name has been automatically used. What data type is
that?

If we select the variable properties and open the combo... there is a
Business Component group that for now only offers one value: not
coincidentally, it is Attraction. Here's where we see the effect of having
enabled the transaction property. The data type Business Component
Attraction was created in the KB; it is available and can now be assigned
to any variable.

[& ravengency - Genexus Tral

@ XRAINCH, &S
@ KB Explorer 7 X
Open
2 TravelAgency ~
Root Module

GeneXus

T aitine
T Airport

28 Attraction

o} AttractionList

+* AttractionsByName

+» AttractionsPerCategory

+» AttractionsReport

T AttractionWithoutParameters

+» CategoriesAndTheirAttractionsList
¥ Cotegory

+* CountriesRanking

+# CountriesWithMoreThan2Attractions
¥ Country

T customer

5 DotaProviderCountries

& Diogram1

&%, Diogram2

&%, Diogram3

%, Diogramé

&%, Diograms

1 EnterAttractionsFitter

T Flight

FlightArvalAirpon

Elelclelelclkl >

Output
C\Modets\Trial TrunkiTravel Agency

File Edit View Layout Insert Build Knowledge Manager Window Tools Test Help

» Release

B StotPoge X 30 Attmction X ¥ InsenCategoryUpdateAttractions

| source * |

© [AttractionAddress | A
© Attractionid
© AttractionName
Q@ AttractionPhoto
q © Categoryld
i © CategoryName

) Check

8 Cityld
© CityName
£ Clone

&attraction
&attraction
&attraction
&attraction

&attraction
&attraction

.AttractionId =
.Attractionhame =
.CountryId =
.Countriame =
&attraction.
n.CityName =
n.Categoryld =
&attraction.

CityTd =

CategoryName =

.AttractionPhoto =
.AttractionAddress =

x

[Nevigation View X

O/ Properties

B 21 | Fitter

&attraction q

Attractionid

AttractionName:

Countryld
[CountryName
[cuyia
[CtyName

ryld

CategoryName

AttractionPhoto

AttractionAddress

O Properies T Toolbox [

o1

£ Tests Results

INS

Having defined this variable in the procedure, memory space is
automatically reserved to load all its elements as an SDT.

So, if we insert the variable and type a period, in this window we see the
names of all the transaction's attributes, among other things, to use them
in the structure, for example, by assigning them a value. In this way, we

could...

E TravelAgency - GeneXus Trial -
File Edit View Layout Insert Build Knowledge Manager Window Tools Test Help
Bla BIOOCD, e N Release

K Explorer 3 X | [swnPage X T Action X 3 InserCotogoryUpdsteAtracions” X | [] NowigationView X 0 Propeties

Open: Source H, V| Fitter

3

.AttractionName = "Forbidden city”

.CountryId nd(CountryId, CountryName = "China")
Cityldy= ityld, CityName = "Beijing")

.Categoryld = find(Categoryld, CategoryName = “Monument”)

T
) FromXmiFile Tnsert(y
1) GetMessages

) GetMetadata

) Getvalue

£ [1510 Boolean

[2) InsertOripdate
) Load
£) Mode

7] Save v

&attraction
Attraction/dl
AttractionName v il ttractionNam c tyl t i

Attractionld

AttractionName |

Countryld

CountryName

Cityld

CityName

Gategoryld
CategoryName | M

AttractionPhoto

AttractionAddress |

vl @) Properties | 'f' Toolbox | (& Tests Explorer

Ln7 Col14 Chi4

i Tests Results

INS

To insert the Forbidden City tourist attraction, as we saw before when we
used the transaction, we will have to complete the data.

We don't need to assign a value to the identifier, because it will be auto-
numbered.

The name of the attraction will be... we know it's in China, it has the
identifier 3, but what if we're wrong? We'd better look for that identifier
with the Find formula, because one thing we are sure of is the name of the
country, China.

That name is an inferred attribute in the transaction, so we don't have to
assign a value to it here to insert the attraction.

We know the city is Beijing, so we find its identifier and assign it to the
business component element and also remove the inferred element.

We assign a value for the category ID, looking for the one named
“Monument.”

And we will not assign any value to the photo and address.

So, the variable is loaded with the data of the attraction we want to insert
in the table. All we have to do is insert it. To do so, we have the Insert
method of the Business component variable, which, as we can see, will
return a Boolean value: True if it could insert it; False otherwise. We can
just invoke it and it will try to insert a new record exactly as the transaction
does, that is, executing all the rules and validations. If it succeeds, then

the variable will be loaded with the ID given by the database and all of its
own and inferred attributes.

i TravelAgency - GeneXus Trial - X
File Edit View Layout Insert Build Knowledge Manager Window Tools Test Help
e BlOog. = » Release
% KB Explorer 70X StartPage X [gi] Attraction X [* InsertCategoryUpdateAttractions* X [F] Navigation View X [L4
o | B EI X
(& TravelAgency ~ ‘ ‘ ~
Root Module
1 N i
GeneX .) .) ame InsertCategoryUpdateAttracti..
enesus 2{ &attraction.AttractionName = "Forbidden city™
5 aiine 3 n.CountryId = find(CountryId, CountryName = "China") Description Insert Category Update Attractio...
[E5) Airport 4 n.CityId = find(Cityld, CityName = "Beijing") Module/Folder Root Nodle
57 Attraction 5] 8 n.Categoryld = find(CategoryId, CategoryName = "Monument”)
* AttractionList N . BT SregTetin LT
. 70 If &attraction.Insert()
. AttractionsByName a T T Call protocol HTTP .
.7 AttractionsPerCategory 9| else Execute in new LUW False
. AttractionsReport 10 Rollback
111l endif Qualified Name nsertCategoryUpdateAttractions

[3] AttractionWithoutP arameters
-¥ CategoriesAndTheirAttractionsList

[59) category

_¥ CountriesRanking
¥ CountriesWithMoreThan2Attractions

[59) Country
[E5) customer

Object Visibility Public

Encrypt URL para No

5 DataProviderCountries Protocol specific: Secure (HTTPS:)

£ Diagrams

[EnterttractionsFiter

[Fiignt

A\ FlightAriv

alAirport

Application title
Application icon

Location

Z\ FlightDepartureAirport Expose as Web Serv False

[Gxoom0
5] oxo081
51 ax0010
1 Gxo020
[Gx0030
51 ax0040
[axoos1
[Gxoos0

Expose as Enterpi False

Connectivity Suppol Inherit

I @/ Properties T Toolbox () Tests Explorer
v L .

\Models\Trial Trunk\Travel Agency Ln 10 Col 14 Ch 10

Generator Default (C# Web)

Auto compress http Use Environment property value

v

= Tests Results

INS

However, we should be aware that although the record is already in the table, it is
in an unstable state. If there is a power outage or system crash for any other
reason, that record will be gone when the database is reestablished.

This is because databases allow us to insert, edit and delete records as if at a
logical level; whenever it seems convenient, we must indicate that all those
operations we have been doing can be accepted. This is done with the Commit
command. Therefore, if the insertion was successful, we commit. This is the
action of making a commit on the database; that is, indicating that these
operations should be fixed -made permanent- in the database. When a Commit is
executed, all operations performed between the previous and the current commit
will be accepted.

Just as we have the Commit operation to accept all those actions, the opposite
one, called Rollback, allows us to undo everything that may have been done after
the last Commit. Here we could make a Rollback if the operation was not
successful... but it will not make much sense, because if the operation was not
successful, we can assume that the record was not even inserted, so there will be
nothing to undo.

To quickly run this procedure from the Developer Menu, we set it as main object
and with HTTP invocation protocol.
We press Fb5.

Application Name

Attractions Bl <

Ids, Name Country Name Category Name Photo City Name Address

If we open the Work With Attractions element, we will see that we already
had attraction 7 for the Forbidden City, which we had inserted earlier
through the transaction. Let's delete it (the identifier with value 7 will be
lost; it will not be given again to the next attraction entered, which will be
8, as we will see now if we run the procedure).

Since it has no output, we don't see anything in the browser, but if we go
back to Work With Attractions... it has actually inserted the Forbidden City.

Let's delete it again, to run the procedure again, but this time we'll add
another attraction besides that one. For example, Notre Dame Cathedral.

[@ Teveingency - Genexus Trm

File Edit View Layout Insert Build Knowledge Manager Window Tools Test Help
Wl allpla o M T Release
KB Explorer 3 X [swnPage X GU| Atmction X % InsenCategoryUpdsteAtiractions * X O Propetiss
open ro— [H4l F | riner
Ratt B "Farbidden city” q
Sat .CountryId CountryId, CountryName = "China") I
g .Cityld = ityId, CityName = "Beijing”)
2t .CategoryTd = find(Categoryld, CategoryName = "Monument”)
If & ion. Insert()
Comnit
endif
: = new()
.Attractiontame = “Notre Dame Cathedral®
.Con c
5 Disgrams
4 EmecAnractionsFiter
T Flight
A\ FiightArivaliirert
A\ FiightDepartureAirpon
A0
~Al Q| Properties | T Toolbor (G Tests Explorer
Ln1 Col20 Ch20

Tests Results

J0/0/1 101 INS

So, we should insert it here. We no longer need the information that the
variable had. Actually, we need to at least clean it up, to make sure
nothing is left behind when we load the Cathedral’s data. One way is to
ask for new memory for the variable, and it is done in this way...

OK. Now we have it insert the data.

Asking for new memory is important. If, for example, we had not assigned
a value to the category identifier in order to leave it empty for the Notre
Dame Cathedral, it would have been loaded with the value we assigned
before. Therefore, it is always good practice to ask for memory before
completing the data of a business component that we are going to insert.
Even up here.

Finally, before running it, note that in this case we inserted the first
attraction and we will commit if that insertion was successful. Let's do the
same with the second one, and commit.

- GeneXus Trial

C\Modets\TrialTrunk\Travel Agency

ayout Insert Build Knowledge Manager Window Too

s Test Help
Release
® X [StetPoge X 30 Attraction X J* InserCategoryUpdsteAtiractions X
Source
= new()
tion.AttractionName = "Forbidden city”
.CountryId = find(Countryld, CountryName = "China")
.Cityld = (Cityld, City = "Beijing")
.Categoryld = find(Categoryld, CategoryName = “Monumer
If Rat Insert()

&at new()

gat .AttractionName = "Notre Dame Cathedral”

& (CountryId, C ran

% ind(CityId, CityName = "Paris

at .CategoryId = find(Categoryld, CategoryName = "Monument"

If & .Insert()
Commit

1se
Rollback

endi

endi

[i)

©/ Properties

[5] | Fitter

©|Propeies T Toolbox

Tests Explorer £=

o

0/

Tests Results.

1171

But we might want to commit only once, after we've inserted both
attractions. Or we could even try to insert the second attraction only if the
first one was successful. For example, in that case, it would be like this.

Here we will only commit when the first and the second insertions were
successful. It could happen that the first one was successful and the
second one was not. Then the record of the first one will be saved in the
database, but it will not be committed. So, maybe in that case, when the
second one is not successful, we don't want the first record to remain in
the database; and then we would use the Rollback command.

Let's run it. F5.

Attractions

Id. Name

Application Name

Country Name Category Name
Museum
Monument
Monument
Monument
Museum
Museum

Monument

Monument

Qr

B HAA¢

City Name
Paris

Beijing

Paris

Rio de Janeiro

Washington

Address

Let's see the attractions, run the procedure, and go back to Work With
Attractions. Now we have 9 and 10.

What if now we wanted to change the category of the Chinese Wall so that

it is no longer a “Monument” and becomes a “Famous Landmark,” as well

as change its name by removing “The"?

[@ everngency - Genexus Tra
File Edit View Layout Insert Build Knowledge Manager Window Tools Test Help
B] Release

P KB Explorer ® X [StatPoge X 30 Attraction X

Open: Source *

&attraction

Attractionld

CategoryN:

Attrac

AttractionAddress

.Load(2)

C\Modets\TrialTrunk\Travel Agency

AttractionName

+» InsertCategoryUpdateAttractions *

[i)

©/ Properties

|52 % | Fiter

©|Propeies T Toolbox Tests Explorer 3=

Ln22 Col20 Ch20

Tests Results.

INS

Let's leave the previous code with comments so that these two attractions
are not inserted again (if their identifiers weren’t auto-numbered, the
insertions would fail because there is a duplicate key, but this is not the

case).

We need to make an Update, as we would do with the transaction. First of
all, we need to load the variable with the Attraction values we want to
change. We know its ID is 2. So we invoke the Load method of the variable

by passing it the key, 2, as a parameter.

When running this, it will go to the table to find the record 2, and if so, it
will load the variable BC with all values: its own, inferred ones and

formulas, as it happens when executing the transaction.

[@ everngency - Genexus Tra = a X
File Edit View Layout Insert Build Knowledge Manager Window Tools Test Help
» »] Release

P KB Explorer ® X [StetPoge X 30 Attraction X J* InserCategoryUpdsteAttractions * X ©| Properties L

Open Source * [#5] %/ Fitter X

[i)

.Load(2)
.AttractionName = "Great Wall"
.CategoryId = find(Categoryld, CategoryName = "Famous Landmark")
.Update()]
£
2624if &attraction.Update()
27 Commit
28 -endif
O Propeies T Toolbox Tests Explorer #= Tests Results
C\Modets\Trial TrunkiTravel Agency 1026 Col2l _ Ch21 INS

Of all these values, we need to change two: the name of the attraction...
And its category...

All we have to do is have the variable update this data in the table. To do
so, we have the Update method.

When invoking it, exactly as in the transaction, all the rules, formulas,
candidate key uniqueness and referential integrity controls will be run; if
everything went well, the record will be updated in the table. And, of
course, the variable will be loaded with the current data.

Again, we could ask for the result of the update to, for example, already
perform a Commit.

Let's try it.

We run the procedure, and check the attractions. Note it's been modified.

Application Name

Attractions EEl <

Id Name Country Name Category Name City Name Address
4 Monument Rio de Janeiro
3 Monument ris F
9 Monument Bejing ~ UPDATE
FamousLandmark

1 Museum

Museum Nice
10 Monument Paris PDA
5 t Museum Washington

B BRH A

To complete the operations, what if now we wanted to delete an attraction
by code?

For example, delete the Great Wall.

File Edit View Layout Insert Build Knowledge Manager Window Tools
P KB Explorer ? X [swiPage X 30

Open:

2+ InsenCategoryUpdsteAttractions * X | Properties 3 X

Source * []5] | Fitter 5

mmi

.Load(2)
.Delete()
_—

30! &attraction.Load(2)

31 &attraction.Delete()
3254if &attraction.Success()
33 Commit

34 - endif|

©|Properties T Toolbox Tests Explorer #= Tests Results.

Ln31 Col21 Ch21 0/0/11/1 INS

As we do in the transaction, we first have to load attraction 2 in the
variable structure, and then simply give the order to delete.

This is done with the Delete command. We cannot repeat it enough: when
this method is executed, all the transaction logic will be executed in
Delete mode, including the referential integrity controls. Therefore, if
there were related information, such as city tours featuring this attraction
that we want to delete, the referential integrity control performed by the
transaction -and by the Business Component- will prevent it. An error will
occur and the record will not be deleted from the table.

However, if there are no errors the record will be deleted. The variable will
be loaded with the data anyway, in case we want to do something with
them.

The Delete method does not return the result of the operation, so to find
out whether it was successful, we will have to query it explicitly using the
Success method (the opposite is the Fail method). And, for example,
Commit the deletion there, i.e., permanently delete the record. This
method can be used after any operation, for example, after Load, to know
if it found the requested record in the table.

Let’s try what we've seen: We run the procedure and note that record 2

has indeed been deleted.

[@ Teveingency - Genexus Trm

— a x
File Edit View Layout Insert Build Knowledge Manager Window Tools Test Help
@ m B, EE b Release
KB Explorer @ X | B Anmscion X % InsedCategoryUpdateAttractons * X @/ Properties L
Open Sousce* —
AttractionsLis! ~ A =
: e y Application Name
) creThan2Attractions 3
= Attraction &
=}
.:A
& Id o
-:i
[x)
£ 1 Name [@ Theattraction name must not be empty
B ions Filter 2
.cl 4
=) & Country Name
=
—
W6 1 o &attraction.AttractionName?
37] & = new —
gatt .Countryld = find(CountryId, CountryName = "China")
.Cityld = find(CityId, CityName = "Beijing")
tion.Categoryld = find(Categoryld, CategoryName = "Monument”)
42 1F & ion.Insert()
Commit
ndi
~Al Q| Properties | T Toolbox (R Tests Explorer = Tests Results
Output
[C\Madels)Trial Trunki Travel Agency Ln44 Col6 Ché J0/0/1 111 INS

And what happens if we run the procedure again? Nothing happens. Why?

In this second run, attraction 2 no longer exists. Therefore, it has not been
loaded or removed.

What if we now try to re-insert the Chinese Wall, but forget to enter its
name? Let’s try it.

We run the procedure. We open Work With Attraction, and don't see the
new attraction inserted. Of course, we forgot to enter its name and the
error rule we had declared is being triggered, preventing that record from
being added to the table!

If we had done this through the transaction, the user would have received
the message we specified in the error rule.

Where was that message when we tried to insert it through the business
component?

[@ Teveingency - Genexus Trm - o X

File Edit View Layout Insert Build Knowledge Manager Window Tools Test Help
&l 2 Q. 58 » Release
$ KB Explorer @ X Q7] Amection X ¥ InsedCategoryUpdsteatiactions X [[] MevigationView X [Messages [Resd-only] X O Propeties LI
Structure EENE x|
" Name Type Description 15 Collection ~
5 & Messages essages
Messages Messages Troe
£ Message
u a 1
Description Var Descrigtion
MessageTypes, GeneXus
v O|Properties T Toolbox (B Tests Explorer 3= Tests Results
C:\Madsist Trial Trunki Travel Agency 101071 1i1

The transaction has a screen to show errors to the user, but the business
component does not. Consequently, error handling is also left to the
developer.

How do we obtain them?

The KB Explorer has a group of References, which we will talk about
another time, but it will always contain a GeneXus module, with
functionalities already implemented to be used in our KB. In particular,
there we will find an SDT called Messages. It is a collection of items
consisting of an ID, a type, and a description. The type is also predefined
in the module. It is numbered and indicates the type of message in each
case: warning, error, information, debug.

Error handling

&attraction = new()
ion.CountryId = find(CountryId, CountryName = "China")

a n.Cityld = find(CityId, CityMName = "Beijing"”)
&attraction.Categoryld = find(Categoryld, CategoryName = "Monument")

If &attraction.Insert()
Commit
else
= &attraction.GetMessages()
ge in &messages

Values Warning:0,Error:1,Info:2,Debug:3

Empty Item False

—> 1

—8————» The attraction name must not be empty

{@ Error("The attraction name must not be empty”, AttractionNameIsEmpty)
E if AttractionName.IsEmpty();

Every time an operation is executed on a Business Component variable,
you can obtain the collection of messages generated by that operation
with the GetMessages method. We will have to define a variable of the
data type returned by that method in order to manipulate its result.

For example, just to be practical, let's show the result in a PDF file. We wiill
run through the collection of messages generated with the for in
command that allows running through collections, among other things.
For this we define a variable of the data type of the message collection
items. And we print every message of that collection in the output.

Let's enter the outputfile rule, and try it.

We run the procedure, and here is the output...

Only one item was obtained in the message collection, with an empty ID,
of type 1 -which is an error. Its description is exactly what we entered in
the error rule of the transaction.

If we look at the syntax of the error rule, we see that it allows a second

parameter, which is optional. This parameter will allow defining the ID of
the error for the business component's message. For example, we will

assign it this value. If we try now... there we see it.

Error handling

AttractionNamelsEmpty

0
Msg("The attraction name must not be empty", AttractionNameIsEmpty)

if AttractionName.IsEmpty(); The attraction name must not be empty

37] &attraction = new() 1

3 n.Countryld = 22

jon.CountryId = find(CountryId, CountryName = "China")
ction.CityId = find(CityId, CityName = "Beijing")
ion.CategoryId = find(CategoryId, CategoryName = "Monument")

ForeignKeyNotFound

1

430 If &attraction.Insert() No matching ‘Country
44 Commit

451 else

46 &messages = &attraction.GetMessages()

47 for &message in &messages

48 print MessagePB

49 endfor

snilendif

ForeignKeyNotFound
1

No matching 'CountryCity'.

Let's do one last test: let's modify the rule so that it is no longer an error,
but a message.

Also, let's enter a non-existent country identifier as Countryld to see how
the insertion fails due to the referential integrity control. Let’s try it.

When trying to insert, three messages were displayed: the firstone is a
Warning message, and it would not have caused the insertion failure by
itself. However, the second and third ones could have caused the failure
because they are of the Error type. The internal ID is this, and the message
displayed to the transaction user when the country integrity fails is, NOT
COINCIDENTALLY, No matching ‘Country’.

Also, a referential integrity error will be thrown when trying to insert the
city, which depends on the country.

Business Compontent

&attraction

&attraction.Load(Pk)
Attractionid 7 .
1% - attractiontiame &attraction.Insert()
= s 2 Countryld AttractionName Forbidden city)
[&attraction.Update()
L:;— - ¢ CountryName Countryld & ionDelet
= 2 Cityld CountryName China attraction Delete()
T - - ¥ CityName Cityld 1 +
- A Categoryld CityName Beiing &attraction.Success()
¥ CategoryName . .
" gory Categoryld 2 &attraction.Fail()
l._‘l AttractionPhoto
AttractionAddress CategoryName Monument &attraction.GetMessages()
AttractionPhoto
+ .
AttractionAddress &attracion.Mode()
LOGIC &attraction.Save()

&attraction.InsertOrUpdate()

Having said that, we have seen the most relevant aspects of updating the
database with Business Components.

In this way, we saw that from the transaction it is possible to create a data
type that is like an SDT, but that allows operations to be performed on the
database from methods.

These operations preserve the logic of the transaction. Although we didn't
go deeper into it, clearly not all the rules and events of the transaction will
be incorporated into the business component. The ones that have to do
with the interface obviously will not. The Parm rule is not taken into
account, either.

In addition to allowing these operations on the database, we can check
the result of the last operation performed, as well as obtain the messages
generated, in a collection.

There are more methods to study. For example, the Mode method returns
the mode of the business component: if it is Insert, Update, Delete.

The Save method will try Insert or Update according to the variable's
mode.

Also, the InsertOrUpdate method will always try to insert, and if it fails
because of a duplicate key, then it will try to update.

The Insert, Update, Delete and InsertOrUpdate methods can also be
applied to Business Components collections.

Business Compontent

X Attractionld Attractionid Attractionid
&attractions AttractionName Notre Dame AttractionName AttractionName Palace of Versailles
Countryld 2 Countryld Countryld 2
CountryName CountryName CountryName
Cityld Cityld Cityld
CityName CityName Beijing CityName
Categoryld 2 Categoryld 3 Categoryld
CategoryName CategoryName Monument CategoryName
AttractionPhoto AttractionPhoto AttractionPhoto
AttractionAddress AttractionAddress AttractionAddress
&attractions.InsertOrUpdate() InsertOrUpdate() InsertOrUpdate() InsertOrUpdate()

So, if the &attractions variable were a collection of the Attraction Business
Component -in this case, a collection of three Attraction items-, applying
the InsertOrUpdate method would be the equivalent of running through
the collection and applying the method individually to each item.

The result will be True if the individual results were all True.

Business Compontent

? Attractionld
Q - p AttractionName

== A Countryld

L— — -« CountryName

l S il A Cityld

T - CityName

- A Categoryld

¥ CategoryName
@ AttractionPhoto
AftractionAddress

+
LOGIC

&attraction

Only in Procedures?

Attractionld

AttractionName

Forbidden city

Countryld

CountryName

China

Cityld

CityName

Beijing

Categoryld

2

CategoryName

Monument

AttractionPhoto

AttractionAddress

&attraction.Load(Pk)
&attraction.Insert()
&attraction.Update()
&attraction.Delete()

&attraction.Success()
&attraction.Fail()
&attraction.GetMessages()

&attracion.Mode()
&attraction.Save()
&attraction.InsertOrUpdate()

The last important thing to mention is that a variable of Business
Component type can be used in any object that has some section of code,
not only procedures. This means that we can update the database; for
example, from a panel event that requests or displays data to the user, as

we'll see.

It can also be done from events in transactions, although in that case
there are some limitations that we will not see here.

More

« InsertCategoryUpdateAttractions proc ~ nsert "Tourist site category
Update Attractions of Beijing

Do: Undo:

. CategoriesAndAttractions web panel Insert “Tourist ;ite” categ_?ry Delete “Tourist site” category
Update Attractions of Beijing Update Attractions of Beijing

Remove Data:

+ MassivelnsertRemove panel From Category
From Attraction

In the following video, we will apply everything seen here in an example.
You may skip it, except for the final part.

There:

We will implement again the procedure created here, so that it inserts a
new tourist attraction category: “Tourist Site.” We'll change all the Beijing
attractions that had the “monument” category and assign it the new one.

We will see how to do this through an interactive web panel, which offers
to do the above, but also to undo what was done, leaving everything as it
was.

Lastly, we will create another web panel that will allow us to remove the
information from both tables, Category and Attraction. This will be taken
up again later, so we recommend watching at least this final part.

To be continued...

Of course there's a lot more to see, but we'll leave that for the next level. If
you're interested, you can search for videos related to this topic in the
GeneXus Analyst course.

GeneXus’

training.genexus.com
wiki.genexus.com

