
Database Update

Using Business Components



Business Component

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Christ the Redemmer 1 1 2

5 Smithsonian Institute 4 2 1

6 Matisse Museum 2 2 1

AttractionId

AttractionName

CountryId

CountryName

CityId

CityName

CategoryId

CategoryName

AttractionPhoto

AttractionAddress

7 Forbidden city 3 1 2

7

Forbidden city

3

1

2

China

Beijing

Monument

&attraction

+

LOGIC

&attraction.Insert()

&attraction.Update()

&attraction.Delete()

In the previous video, we were given a detailed overview of familiar 
concepts to pave the way for understanding and using business 
components. 

From the transaction structure with its logic (and by logic we mean 
controls for duplicates not only primary key, but also candidate keys , 
referential integrity, most of its rules and some of its events), a kind of data 
type similar to an SDT, but much more powerful, is obtained. 

Then, it will be enough to define in almost any program a variable of that 
data type and manipulate it, which is what we will see next.

This variable, in its structure, will be handled similarly to an SDT. But it will 
also offer methods for doing something specific to a transaction: loading 
from the database, inserting, modifying, deleting; all this by executing the 
logic of the transaction, and then obtaining the generated messages and 
the results of success or failure. 

The way to obtain that kind of data in the knowledge base is simply by 
turning on the Business Component property of the transaction. 



We will start by creating a simple procedure that we will modify to 
implement a more complete requirement later. Let's not pay attention to 
the name right now. 

tourist attraction. 



Insert through BC

The first thing we must do is create the Business Component of the 
Attraction transaction, so that it can be used in any object in the 
knowledge base. Therefore, we go to the transaction and among its 
properties find the one called Business Component. It is set to False by 
default. We change it to True. At first, we don't see any effect. However, if 
we save... we see this in the navigation listing. 



Insert through BC

If now we go to the procedure and define in it a variable named Attraction, 
we see that because we selected a name matching that of the transaction, 
a data type of that name has been automatically used. What data type is 
that? 
If we select the variable properties and open the combo... there is a 
Business Component group that for now only offers one value: not 
coincidentally, it is Attraction. Here's where we see the effect of having 
enabled the transaction property. The data type Business Component 
Attraction was created in the KB; it is available and can now be assigned 
to any variable. 



Having defined this variable in the procedure, memory space is 
automatically reserved to load all its elements as an SDT. 

So, if we insert the variable and type a period, in this window we see the 
names of all the transaction's attributes, among other things, to use them 
in the structure, for example, by assigning them a value. In this way, we 
could...



Insert through BC

To insert the Forbidden City tourist attraction, as we saw before when we 
used the transaction, we will have to complete the data.
We don't need to assign a value to the identifier, because it will be auto-
numbered.
The name of the attraction will be... we know it's in China, it has the 
identifier 3, but what if we're wrong? We'd better look for that identifier 
with the Find formula, because one thing we are sure of is the name of the 
country, China.
That name is an inferred attribute in the transaction, so we don't have to 
assign a value to it here to insert the attraction.
We know the city is Beijing, so we find its identifier and assign it to the 
business component element and also remove the inferred element.
We assign a value for the category ID, looking for the one named 

And we will not assign any value to the photo and address.

So, the variable is loaded with the data of the attraction we want to insert 
in the table. All we have to do is insert it. To do so, we have the Insert 
method of the Business component variable, which, as we can see, will 
return a Boolean value: True if it could insert it; False otherwise. We can 
just invoke it and it will try to insert a new record exactly as the transaction 
does, that is, executing all the rules and validations. If it succeeds, then 



the variable will be loaded with the ID given by the database and all of its 
own and inferred attributes.



Insert through BC

However, we should be aware that although the record is already in the table, it is 
in an unstable state. If there is a power outage or system crash for any other 
reason, that record will be gone when the database is reestablished.
This is because databases allow us to insert, edit and delete records as if at a 
logical level; whenever it seems convenient, we must indicate that all those 
operations we have been doing can be accepted. This is done with the Commit 
command. Therefore, if the insertion was successful, we commit. This is the 
action of making a commit on the database; that is, indicating that these 
operations should be fixed made permanent in the database. When a Commit is 
executed, all operations performed between the previous and the current commit 
will be accepted. 

Just as we have the Commit operation to accept all those actions, the opposite 
one, called Rollback, allows us to undo everything that may have been done after 
the last Commit. Here we could make a Rollback if the operation was not 
successful... but it will not make much sense, because if the operation was not 
successful, we can assume that the record was not even inserted, so there will be 
nothing to undo. 

To quickly run this procedure from the Developer Menu, we set it as main object 
and with HTTP invocation protocol. 
We press F5. 

8



If we open the Work With Attractions element, we will see that we already 
had attraction 7 for the Forbidden City, which we had inserted earlier 
through the transaction. Let's delete it (the identifier with value 7 will be 
lost; it will not be given again to the next attraction entered, which will be 
8, as we will see now if we run the procedure). 

Since it has no output, we don't see anything in the browser, but if we go 
back to Work With Attractions... it has actually inserted the Forbidden City. 

Let's delete it again, to run the procedure again, but this time we'll add 
another attraction besides that one. For example, Notre Dame Cathedral. 



Insert through BC

So, we should insert it here. We no longer need the information that the 
variable had. Actually, we need to at least clean it up, to make sure 

ask for new memory for the variable, and it is done in this way...

OK. Now we have it insert the data. 

Asking for new memory is important. If, for example, we had not assigned 
a value to the category identifier in order to leave it empty for the Notre 
Dame Cathedral, it would have been loaded with the value we assigned 
before. Therefore, it is always good practice to ask for memory before 
completing the data of a business component that we are going to insert. 
Even up here. 

Finally, before running it, note that in this case we inserted the first 
attraction and we will commit if that insertion was successful. Let's do the 
same with the second one, and commit. 



Insert through BC

But we might want to commit only once, after we've inserted both 
attractions. Or we could even try to insert the second attraction only if the 
first one was successful. For example, in that case, it would be like this. 

Here we will only commit when the first and the second insertions were 
successful. It could happen that the first one was successful and the 
second one was not. Then the record of the first one will be saved in the 
database, but it will not be committed. So, maybe in that case, when the 
second one is not successful, we don't want the first record to remain in 
the database; and then we would use the Rollback command. 

Let's run it. F5.



Let's see the attractions, run the procedure, and go back to Work With 
Attractions. Now we have 9 and 10. 

What if now we wanted to change the category of the Chinese Wall so that 



Let's leave the previous code with comments so that these two attractions 
-numbered, the 

insertions would fail because there is a duplicate key, but this is not the 
case).

We need to make an Update, as we would do with the transaction. First of 
all, we need to load the variable with the Attraction values we want to 
change. We know its ID is 2. So we invoke the Load method of the variable 
by passing it the key, 2, as a parameter. 
When running this, it will go to the table to find the record 2, and if so, it 
will load the variable BC with all values: its own, inferred ones and 
formulas, as it happens when executing the transaction.



Update through BC

Of all these values, we need to change two: the name of the attraction... 
And its category...

All we have to do is have the variable update this data in the table. To do 
so, we have the Update method. 
When invoking it, exactly as in the transaction, all the rules, formulas, 
candidate key uniqueness and referential integrity controls will be run; if 
everything went well, the record will be updated in the table. And, of 
course, the variable will be loaded with the current data. 
Again, we could ask for the result of the update to, for example, already 
perform a Commit.

Let's try it. 

We run the procedure, and check the attractions. Note it's been modified.



Delete through BC

To complete the operations, what if now we wanted to delete an attraction 
by code?

For example, delete the Great Wall. 



Delete through BC

As we do in the transaction, we first have to load attraction 2 in the 
variable structure, and then simply give the order to delete. 

This is done with the Delete command. We cannot repeat it enough: when 
this method is executed, all the transaction logic will be executed in 
Delete mode, including the referential integrity controls. Therefore, if 
there were related information, such as city tours featuring this attraction 
that we want to delete, the referential integrity control performed by the 
transaction and by the Business Component will prevent it. An error will 
occur and the record will not be deleted from the table. 
However, if there are no errors the record will be deleted. The variable will 
be loaded with the data anyway, in case we want to do something with 
them. 

The Delete method does not return the result of the operation, so to find 
out whether it was successful, we will have to query it explicitly using the 
Success method (the opposite is the Fail method). And, for example, 
Commit the deletion there, i.e., permanently delete the record. This 
method can be used after any operation, for example, after Load, to know 
if it found the requested record in the table. 



has indeed been deleted.



Errors?

&attraction.AttractionName?

And what happens if we run the procedure again? Nothing happens. Why?

In this second run, attraction 2 no longer exists. Therefore, it has not been 
loaded or removed. 

What if we now try to re-insert the Chinese Wall, but forget to enter its 

We run the procedure. We open Work With Attraction, and don't see the 
new attraction inserted. Of course, we forgot to enter its name and the 
error rule we had declared is being triggered, preventing that record from 
being added to the table!

If we had done this through the transaction, the user would have received 
the message we specified in the error rule. 

Where was that message when we tried to insert it through the business 
component?



Error handling

The transaction has a screen to show errors to the user, but the business 
component does not. Consequently, error handling is also left to the 
developer. 

How do we obtain them?

The KB Explorer has a group of References, which we will talk about 
another time, but it will always contain a GeneXus module, with 
functionalities already implemented to be used in our KB. In particular, 
there we will find an SDT called Messages. It is a collection of items 
consisting of an ID, a type, and a description. The type is also predefined 
in the module. It is numbered and indicates the type of message in each 
case: warning, error, information, debug. 



Error handling

Every time an operation is executed on a Business Component variable, 
you can obtain the collection of messages generated by that operation 
with the GetMessages method. We will have to define a variable of the 
data type returned by that method in order to manipulate its result. 

For example, just to be practical, let's show the result in a PDF file. We will 
run through the collection of messages generated with the for in 
command that allows running through collections, among other things. 
For this we define a variable of the data type of the message collection 
items. And we print every message of that collection in the output. 

Let's enter the outputfile rule, and try it. 

Only one item was obtained in the message collection, with an empty ID, 
of type 1 which is an error. Its description is exactly what we entered in 
the error rule of the transaction. 

If we look at the syntax of the error rule, we see that it allows a second 
parameter, which is optional. This parameter will allow defining the ID of 
the error for the business component's message. For example, we will 



assign it this value. If we try now... there we see it.



Error handling

Let's do one last test: let's modify the rule so that it is no longer an error, 
but a message. 
Also, let's enter a non-existent country identifier as CountryId to see how 

When trying to insert, three messages were displayed: the first one is a 
Warning message, and it would not have caused the insertion failure by 
itself. However, the second and third ones could have caused the failure 
because they are of the Error type. The internal ID is this, and the message 
displayed to the transaction user when the country integrity fails is, NOT 
COINCIDENTALLY, No matching 'Country'.

Also, a referential integrity error will be thrown when trying to insert the 
city, which depends on the country. 



Business Compontent

+

LOGIC

AttractionId

AttractionName

CountryId

CountryName

CityId

CityName

CategoryId

CategoryName

AttractionPhoto

AttractionAddress

7

Forbidden city

3

1

2

China

Beijing

Monument

&attraction

+

&attraction.Success()

&attraction.Fail()

&attraction.GetMessages()

&attraction.Load(Pk)

&attraction.Insert()

&attraction.Update()

&attraction.Delete()

&attracion.Mode()

&attraction.Save()

&attraction.InsertOrUpdate()

Having said that, we have seen the most relevant aspects of updating the 
database with Business Components. 

In this way, we saw that from the transaction it is possible to create a data 
type that is like an SDT, but that allows operations to be performed on the 
database from methods. 
These operations preserve the logic of the transaction. Although we didn't 
go deeper into it, clearly not all the rules and events of the transaction will 
be incorporated into the business component. The ones that have to do 
with the interface obviously will not. The Parm rule is not taken into 
account, either. 
In addition to allowing these operations on the database, we can check 
the result of the last operation performed, as well as obtain the messages 
generated, in a collection. 

There are more methods to study. For example, the Mode method returns 
the mode of the business component: if it is Insert, Update, Delete. 
The Save method will try Insert or Update according to the variable's 
mode.
Also, the InsertOrUpdate method will always try to insert, and if it fails 
because of a duplicate key, then it will try to update. 



The Insert, Update, Delete and InsertOrUpdate methods can also be 
applied to Business Components collections.



Business Compontent

&attractions

&attractions.InsertOrUpdate() InsertOrUpdate() InsertOrUpdate() InsertOrUpdate()

AttractionId

AttractionName

CountryId

CountryName

CityId

CityName

CategoryId

CategoryName

AttractionPhoto

AttractionAddress

AttractionId

AttractionName

CountryId

CountryName

CityId

CityName

CategoryId

CategoryName

AttractionPhoto

AttractionAddress

AttractionId

AttractionName

CountryId

CountryName

CityId

CityName

CategoryId

CategoryName

AttractionPhoto

AttractionAddress

Notre Dame

2

1

2

Great Wall

2

China

3

1

Beijing

3

Monument

Palace of Versailles

2

1

3

So, if the &attractions variable were a collection of the Attraction Business 
Component in this case, a collection of three Attraction items , applying 
the InsertOrUpdate method would be the equivalent of running through 
the collection and applying the method individually to each item.

The result will be True if the individual results were all True. 



Business Compontent

+

LOGIC

AttractionId

AttractionName

CountryId

CountryName

CityId

CityName

CategoryId

CategoryName

AttractionPhoto

AttractionAddress

7

Forbidden city

3

1

2

China

Beijing

Monument

&attraction

+

&attraction.Success()

&attraction.Fail()

&attraction.GetMessages()

&attraction.Load(Pk)

&attraction.Insert()

&attraction.Update()

&attraction.Delete()

&attracion.Mode()

&attraction.Save()

&attraction.InsertOrUpdate()

Only in Procedures?

The last important thing to mention is that a variable of Business 
Component type can be used in any object that has some section of code, 
not only procedures. This means that we can update the database; for 
example, from a panel event that requests or displays data to the user, as 
we'll see. 

It can also be done from events in transactions, although in that case 
there are some limitations that we will not see here. 



• InsertCategoryUpdateAttractions proc

• CategoriesAndAttractions web panel

• MassiveInsertRemove panel

More

Insert Tourist site category
Update Attractions of Beijing

Do:
Insert Tourist site category
Update Attractions of Beijing

Undo:
Delete Tourist site category
Update Attractions of Beijing

Remove Data:
From Category
From Attraction

In the following video, we will apply everything seen here in an example. 
You may skip it, except for the final part. 

There: 

We will implement again the procedure created here, so that it inserts a 

We will see how to do this through an interactive web panel, which offers 
to do the above, but also to undo what was done, leaving everything as it 
was. 

Lastly, we will create another web panel that will allow us to remove the 
information from both tables, Category and Attraction. This will be taken 
up again later, so we recommend watching at least this final part.



Of course there's a lot more to see, but we'll leave that for the next level. If 
you're interested, you can search for videos related to this topic in the 
GeneXus Analyst course. 



training.genexus.com
wiki.genexus.com


