Database Update

Using Business Components

GeneXus

Business Component

5| Attraction
Attractionld

) AttractionName
Countryld
CountryName
Cityld
CityName
Categoryld

K %K %K %w“O°

CategoryName
laa| AttractionPhoto
AttractionAddress

+

LOGIC

\

Business Component

&attraction

Attractionld

Attractionld AttractionName Countryld ityld

AttractionName
Countryld
CountryName
Cityld

CityNam e
Categoryld
CategoryName
AttractionPhoto

AttractionAddress

\‘ &attraction.Insert() /

&attraction.Update()
&attraction.Delete()

In the previous video, we were given a detailed overview of familiar
concepts to pave the way for understanding and using business
components.

From the transaction structure with its logic (and by logic we mean
controls for duplicates -not only primary key, but also candidate keys-,
referential integrity, most of its rules and some of its events), a kind of
data type similar to an SDT, but much more powerful, is obtained.

Then, it will be enough to define in almost any program a variable of
that data type and manipulate it, which is what we will see next.

This variable, in its structure, will be handled similarly to an SDT. But it
will also offer methods for doing something specific to a transaction:
loading from the database, inserting, modifying, deleting; all this by
executing the logic of the transaction, and then obtaining the
generated messages and the results of success or failure.

The way to obtain that kind of data in the knowledge base is simply by
turning on the Business Component property of the transaction.

tegoryld

File Edit View Layout Insert Build Knowledge Manager Window Tools Test Help

BBXD
@ KB Explorer
pen
& TravelAgency
Root Module
GeneXus
TT Ariine
W Arpot
¥ Anraction
o} AttractionList
.} AttractionsByName
o AttractionsPerCategory
o+ AttractionsReport
7T Attraction\VahoutParameters
. CategoriesAndThewAttractionsList
¥ Category
o+ CountresRanking
+* CountresWithMore Than2Altractions
¥ Country
T Customer
5 DataProviderCountries

1 EntecAtiractionsFiter
W Fight
A FightAmvalAipont
A FightDepartursAirpon
1 Gx0040
5 Gxo081
4 ax0010
1 Gx0020
1 Gx00%0
1 Gx00%0
[Gx0051
Output
\Models\TnalTrunki\Travel Agency

BIOCH, EEx»

- | Release

? X [SwPage X W Attraction X

| Structure %
2 Nome
- 7% Attraction

§ anracioni
P AttractionNeme
2 Countryld
« CountryName
2 Gtyd
¥ Ctylame
2 Categoryld
¥ Categoryliame
laal AttractionPhoto
* AtractonAddress

Type Description

Formula

Attraction Attraction
u Anracton 14
Nome Attraction Name
] Country 1d
Name Country Neme
New Object X

Select o Category Select a Type: [z |

Data Management AP % Transacbon

User Intedace E50ata Provider i Ud Rewrite

oPM {=i Data Selector

Chatbots Data Vi

Resources f sl

Documentation ple Domain

Extensibiity o Procedure

Deploy & Structured Data Type

Reponng & Subtype Group

Test

ALL

Defines a program or routine that implements an algorithm, including database access, dota updates, and
panting

Name InsenCategoryUpdate/firactons]
Descnption Insert Category Update Atractons
Module/Folder Roct Module -

[Coreae]

§§7F

Yes

Yes

FF

v

© Properties
[H51 ¥/ Finer
Transactionlevet: Attraction
Name Attraction
Type Attraction
Description Attraction
Logically Deleted Attr

Last Modified Date Tit

ated Table Attract

© Propetws T Tookox (B Tests Explorer 3= Tests Results

We will start by creating a simple procedure that we will modify to

implement a more complete requirement later. Let's not pay attention
to the name right now.
We'll start with something very simple: suppose we want to insert a new
tourist attraction.

Insert through BC P — e s

Pattern
Abecton Transaction Attraction_BC Navigation Report
Amracson_BC

insertCategoryUpdateAttractions * X ™ Nevigation View X

©

- /55 Attraction

Attractionld
/ AttractionName

Countryld

CountryName

Cityld

CityName

Categoryld

K %K %K %0

CategoryName
|aa] AttractionPhoto
® AttractionAddress

L

Business Component True

5 Business Components
_ Attraction

1 0 Errors [0 Warnings [@ 2 Success || All +

The first thing we must do is create the Business Component of the
Attraction transaction, so that it can be used in any object in the
knowledge base. Therefore, we go to the transaction and among its
properties find the one called Business Component. It is set to False by
default. We change it to True. At first, we don't see any effect. However,
if we save... we see this in the navigation listing.

Insert through BC

Variables * 2| F | Finer

attraction

- amvacvon Aracton sttracton

TN
:

If now we go to the procedure and define in it a variable named
Attraction, we see that because we selected a name matching that of
the transaction, a data type of that name has been automatically used.
What data type is that?

If we select the variable properties and open the combo... thereisa
Business Component group that for now only offers one value: not
coincidentally, it is Attraction. Here's where we see the effect of having
enabled the transaction property. The data type Business Component
Attraction was created in the KB; it is available and can now be assigned
to any variable.

j TravelAgency - GeneXus Tnal

file Edit View Layout Insert Build Knowledge Manager Window Tools Test Help

FBXDBNCH, &t

@ KB Explorer
pen
& Travelgency
Root Module
GeneXus
TV Artine
TV Arpont
¥ Atraction
o AttractionList
o4 AttractionsByName
.} AttractionsPerCategory
o¥ AttractionsRepont
77 Altraction\WahoutParameters
.# CategoniesAndThewAttractionsList
¥ Category
.+ CountriesRanking
. CountnesWithMoreThan2Aftractons
¥ Country
¥ Customer
15 DataProviderCountries
&3 Dgram1
&3 Dogrom2
73 Dogram3
&3 Dogramé
&3 Dagrom$
[EntecAttractionsF iter
TT Faght
A FrghtAmvalaipon
2\ FightDepartureAinpon
1 Gx0040
4 Gx0081
5 Gxo010
1 Gx0020
1 Gx00%0
1 Gx0040
[Gx0051
Output
Wodels\TnalTrunk!\Travel Agency

- =) x
Release
@) StatPoge X G Atmction X .+ InseCategoryUpdateAttractions * X [Newigation View X 7 (O] Properties * X
Source * \ 21 F | Finer X
© |AttractionAddress | A Siniscoon 3
O Attractionid w = .
© AttractionName Rovonboiicee
O AttractionPhoto AtractionNerme
71 O Categoryld _Countryld N
©/ CategoryName CountryName
£5) Check [ty
Q Cityld r Cayha
© CityName Bl
Categoryld
CategoryName
AttractionPhoto
AttractionAddress
tattraction.Attractionld =
&attraction.AttractionName =
&é) Countryld =
& action.CountrjName =
E a Cityld =
& action.CityName =
¥ ac n.Categoryld =
action.CategoryName =
&attraction.AttractionPhoto =
&attraction.AttractionAddress =
© Propees T Tookbax (@ Tests Explorer 3= Tests Results
L1 Col12 Ch12 NS

Having defined this variable in the procedure, memory space is
automatically reserved to load all its elements as an SDT.

So, if we insert the variable and type a period, in this window we see the
names of all the transaction's attributes, among other things, to use
them in the structure, for example, by assigning them a value. In this
way, we could...

er Window Tools Test Help

» Release
? X [SwiPoge X ¥ Attraction X .+ InsertCategoryUpdateAttractions* X [M] Nawigation View X O/ Properties

Source * 2| | Fitter

AttractionName = “Forbidder

)

.Countryld f (Country
.Cityld ind(Cityld, Ci
.Categoryld (Categoryl

.Insert()

Attractionid 1

AttractionName
Attractionid
AttractionName

CountryName

v © Propees T Toolbex Tests Explorer $= Tests Results

ol 14 Chi4 NS

To insert the Forbidden City tourist attraction, as we saw before when
we used the transaction, we will have to complete the data.

We don't need to assign a value to the identifier, because it will be auto-
numbered.

The name of the attraction will be... we know it's in China, it has the
identifier 3, but what if we're wrong? We'd better look for that identifier
with the Find formula, because one thing we are sure of is the name of
the country, China.

That name is an inferred attribute in the transaction, so we don't have to
assign a value to it here to insert the attraction.

We know the city is Beijing, so we find its identifier and assign it to the
business component element and also remove the inferred element.
We assign a value for the category ID, looking for the one named
“Monument.”

And we will not assign any value to the photo and address.

So, the variable is loaded with the data of the attraction we want to
insert in the table. All we have to do is insert it. To do so, we have the
Insert method of the Business component variable, which, as we can
see, will return a Boolean value: True if it could insert it; False otherwise.
We can just invoke it and it will try to insert a new record exactly as the
transaction does, that is, executing all the rules and validations. If it
succeeds, then the variable will be loaded with the ID given by the
database and all of its own and inferred attributes.

er Window Tools Test Help

B StotPoge X T Attmction X+ InsenCategoryUpdateAttractions * X Nawigation View X o ? X

Source * 2| F | Fitter

)

.AttractionName
.Countryld = f
.Cityld

.Categoryld

.Insert()
Commit Call protocol HTTP

Execute in new LUW False

Rollback

] Propertes | T Tookox | (3 Tests Exploer | £ Tasts Rasuts

ol 14 Ch10 NS

However, we should be aware that although the record is already in the
table, it is in an unstable state. If there is a power outage or system
crash for any other reason, that record will be gone when the database
is reestablished.

This is because databases allow us to insert, edit and delete records as
if at a logical level; whenever it seems convenient, we must indicate
that all those operations we have been doing can be accepted. This is
done with the Commit command. Therefore, if the insertion was
successful, we commit. This is the action of making a commit on the
database; that is, indicating that these operations should be fixed -
made permanent- in the database. When a Commit is executed, all
operations performed between the previous and the current commit
will be accepted.

Just as we have the Commit operation to accept all those actions, the
opposite one, called Rollback, allows us to undo everything that may
have been done after the last Commit. Here we could make a Rollback if
the operation was not successful... but it will not make much sense,
because if the operation was not successful, we can assume that the
record was not even inserted, so there will be nothing to undo.

To quickly run this procedure from the Developer Menu, we set it as
main object and with HTTP invocation protocol.
We press Fb5.

@ Attractior X + = @3 X

<« C @ trialapps3.genexus.com/Idb9 1c0fdd3baae864a5f85aa8/ wwattract ISPX & o ¢ | 6 :

Application Name

- Attractions

FILTERS Attractions
Ordered By : Name
Id= Name Country Name Category Name City Name Address

NTRY NAME 1 vre Muse France Museum Paris
2 The Great Wa hina Monument Beijing
3 Elffel Tower France Monument Paris
4 Christ the Redemme Braz Monument Rio de Janeiro
5 Smitt an Institute nited State Museum Washington
6 Matisse Muse! France Museum Nice
8 Fw:vr.w;';.h;:‘ city] Monument Beijing

wtps//trialapps3. genexus.com/IdbI28525699ac0fdd 3baae864a51852a8 viewattraction.aspx?8.

If we open the Work With Attractions element, we will see that we
already had attraction 7 for the Forbidden City, which we had inserted
earlier through the transaction. Let's delete it (the identifier with value 7
will be lost; it will not be given again to the next attraction entered,
which will be 8, as we will see now if we run the procedure).

Since it has no output, we don't see anything in the browser, but if we
go back to Work With Attractions... it has actually inserted the
Forbidden City.

Let's delete it again, to run the procedure again, but this time we'll add
another attraction besides that one. For example, Notre Dame
Cathedral.

Knowledge Manager Window Tools Test Help
» Release
? X [SwaPoge X [T Ammchon X 3 InsenCategoryUpdateAttractions * X O Properties s x
Source * 7| ¥ | Fitter ¢
= new()|
AttractionName = "Forbidden city”
.Countryld = find(Countryld, CountryName ina™) ‘ol
Cityld = find(Cityld, CityName = “Beijing
.Categoryld = find(Categoryld, CategoryName ")
I
1f . Insert()
Commit
endif
= new()
AttractionName = “Notre Dame Cathedral®
.Countryld = find(Countryld, Coun = "France”)
Cityld = find(Cityld, CityName = "Par)
Categoryld = find(Categoryld, CategoryName - “Monument™)
If Insert()
Commit
endif
1 EntecAtractionsF iter
TV Fight
A FlgrtAmvelupon
B\ FightDepoureAipon
)
7|
r-|
)
o=
G v © Properes T Teolbox Tests Explorer *= Tests Results
Output
Models\Tnal Trunk\Travel Agency L1 Col20 Ch20 0/0/11/1 NS

So, we should insert it here. We no longer need the information that the
variable had. Actually, we need to at least clean it up, to make sure
nothing is left behind when we load the Cathedral’s data. One way is to
ask for new memory for the variable, and it is done in this way...

OK. Now we have it insert the data.

Asking for new memory is important. If, for example, we had not
assigned a value to the category identifier in order to leave it empty for
the Notre Dame Cathedral, it would have been loaded with the value we
assigned before. Therefore, it is always good practice to ask for
memory before completing the data of a business component that we
are going to insert. Even up here.

Finally, before running it, note that in this case we inserted the first
attraction and we will commit if that insertion was successful. Let's do
the same with the second one, and commit.

uild Knowledge Manager Window Tools Test Help

’ Release
? X [StetPoge X ¥ Attrction X .+ InsentCotegoryUpdateAttractions X O/ Properties
pen Source 2| ¥ | Finter
= new() —1
.AttractionName = "Forbidden city” &l
.Countryld = f (Countryld, CountryName = ™ =
.Cityld = find(Cityld, CityName = "Beijing"
.Categoryld = find(Categoryld, CategoryName -3
If .Insert()
= new()
.AttractionName = "Notre Dame Cathedral®
.Countryld = find(Countryld, CountryName = "France”)
.Cityld = find(Cityld, CityName = "Paris”)
.Categoryld = find(Categoryld, CategoryName = “Monument”)
st
1f .Insert()
Commit
nan2Attactons else
Rollback
endif
endif
&0
&l
-
TT Fight
A
A
|
o)
ol
o)
o)
G v © Propews T Toolbex

Output

Modets\ TnaiTrunk\ Travel Agency

Tests Explorer

Tests Results

But we might want to commit only once, after we've inserted both
attractions. Or we could even try to insert the second attraction only if
the first one was successful. For example, in that case, it would be like
this.

Here we will only commit when the first and the second insertions were
successful. It could happen that the first one was successful and the
second one was not. Then the record of the first one will be saved in the
database, but it will not be committed. So, maybe in that case, when
the second one is not successful, we don't want the first record to
remain in the database; and then we would use the Rollback command.

Let'srun it. F5.

"

@ GeneXus Developer M x @ x +

C @ trialapps3.genexus.com/Idbo. 699ac0fdd3baae864a5f85aa8/wwattraction.aspx PPNY B
ategory — Attractions
TERS Attractions

Ordered By : Name

Ids Name Country Name Category Name City Name Address
NTRY NAME 1 Louvre Museur France Museum Paris
2 hina Monument Beljing PDATE DELETE
k2
3 Eiffel Tower France Monument Paris PDATE DELETE
4 Christ the Redemme Braz Monument Rio de Janeiro
5 mithsonian Institute nite tate Museum Washington
6 Matisse Museun France Museum Nice
9 Forbidden city hina Monument Beijing
10 Notre Dame Cathedral France Monument Paris

Let's see the attractions, run the procedure, and go back to Work With
Attractions. Now we have 9 and 10.

What if now we wanted to change the category of the Chinese Wall so
that it is no longer a “Monument” and becomes a “Famous Landmark,”
as well as change its name by removing “The"?

ITrunk)\Travel Agency

B StotPoge X T Attmction X+ InsenCategoryUpdateAttractions * X

Release

Source * 7| | Fitter

)

Attractionld

AttractionName

CountryName
tyld

CityName

ategoryName
AttractionPhot

AttractionAddress

.Load(2)

© Propews T Toolbax Tests Explorer *

Tests Results

NS

Let's leave the previous code with comments so that these two
attractions are not inserted again (if their identifiers weren’t auto-
numbered, the insertions would fail because there is a duplicate key,
but this is not the case).

We need to make an Update, as we would do with the transaction. First
of all, we need to load the variable with the Attraction values we want to
change. We know its ID is 2. So we invoke the Load method of the
variable by passing it the key, 2, as a parameter.

When running this, it will go to the table to find the record 2, and if so, it
will load the variable BC with all values: its own, inferred ones and
formulas, as it happens when executing the transaction.

13

s Tr o
Build Knowledge Manager Window Tools Test Help
’ Release
? X [SwaPage X 3§ Attmction X % InserCategoryUpdateAttractions * X O Properties ? x
Source * 2| | Fitter
B
&attraction 2l
Attractionid
AttractionName
tryld
CountryName
CryName
“ategoryName
AttractionPhot
AttractionAddress
.Load(2)
.AttractionName = "Great Wall®
.Categoryld = find(Categoryld, CategoryName = “Famous Landmark™)
.Update()|
if &at .Update()
Commit
ey
o endif
Py
r?)
o)
)
re)
re)
M™a v © Propews T Toolbex Tests Explorer 1= Tests Results
utput
Models\Tral T runk\Travel Agency Ln26 Col2l Ch21 NS

Of all these values, we need to change two: the name of the attraction...
And its category...

All we have to do is have the variable update this data in the table. To
do so, we have the Update method.

When invoking it, exactly as in the transaction, all the rules, formulas,
candidate key uniqueness and referential integrity controls will be run;
if everything went well, the record will be updated in the table. And, of
course, the variable will be loaded with the current data.

Again, we could ask for the result of the update to, for example, already
perform a Commit.

Let's try it.

We run the procedure, and check the attractions. Note it's been
modified.

14

@ Attraction X @ https/ftrialapps3genexuscom/. X | < - o X

C @ trialapps3.genexus.com/Idb928525699c0fdd3bane864asf85aa8/wwattraction.aspx wr o0
ent Attractions
FILTERS Attractions

Ordered By : Name

Id Name Country Name Category Name City Name Address
£ TRY £ 4 Christ the Redemme Brazi Monument Rio de Janeiro PDATE DELETE
3 Eiffel Tower France Monument Paris PDATE DELETE
9 Forbidden city hina Monument Beijing PDATE DELETE
2—Great-Wel Famous-tandmari Beijing YPOAF
[

1 Louvre Museur France Museum Paris PDATE DELETE
6 Matisse Museurr France Museum Nice
10 Notre Dame Cathedral France Monument Paris

§ Smithsonian Institute nited States Museum Washington

To complete the operations, what if now we wanted to delete an
attraction by code?

For example, delete the Great Wall.

15

® X [StstPage X ¥ Atmction X b InsedCategoyUpdeteAtiractions® X O/ Propertis

Source * ¥ | Fitter

)

Load(2)
.Delete()
s

.Load(2)
.Delete()
if .Success()
33 Commit
! endif]

As we do in the transaction, we first have to load attraction 2 in the
variable structure, and then simply give the order to delete.

This is done with the Delete command. We cannot repeat it enough:
when this method is executed, all the transaction logic will be executed
in Delete mode, including the referential integrity controls. Therefore, if
there were related information, such as city tours featuring this
attraction that we want to delete, the referential integrity control
performed by the transaction -and by the Business Component- will
prevent it. An error will occur and the record will not be deleted from
the table.

However, if there are no errors the record will be deleted. The variable
will be loaded with the data anyway, in case we want to do something
with them.

The Delete method does not return the result of the operation, so to
find out whether it was successful, we will have to query it explicitly
using the Success method (the opposite is the Fail method). And, for
example, Commit the deletion there, i.e., permanently delete the
record. This method can be used after any operation, for example, after
Load, to know if it found the requested record in the table.

Let’'s try what we've seen: We run the procedure and note that record 2
has indeed been deleted.

16

M TravelAgency - GeneXus Trial
File Edit View Layout Insert Build Knowledge Manager Window Tools Test Help
]) NOOCO, &8 » Release
KB Explorer ? X Q¥ Attction X % InsedCategoryUpdateAttractions * X O Properties * X

pen Source * 2| | Fitter

o+ CategonesAndThewAttractionsList ~
B Cotogory Application Name
CountnesRanking

CountresWithMore Than2Attractions

Attraction

Country

Customer
££53 DataProviderCountnes Attraction
&3 Diogram1
£ Disgram2
&5 Disgram3 W 0
&5 Disgrams
5 Dagrams
31 EntecAnractionsFiter Name { The atvacton name
TV Fignt
A FigAmvaiAipon Country Id H
A FightDepantureAirpon

Country Name

¢
»4 ¢
L: Citv id
%) Rattr
[Rattr
=T if &a
st

4if
)
sk I &attraction.AttractionName?
[Gx0090 5 = new()

.Countryld = find(Countryld, CountryName = “China")
. * InsenCategoryUpdateAttract e -
- 2 — 3 .Cityld = find(Cityld, CityName = "Beijing")
o NumberOfAttractions By Country 4 & .Categoryld = find(Categoryld, CategoryName = “Monument"”)
o} PrintRanking
53 RankingCountnes \WithAttractons Gty 42111F &at t .Insert()
4 Commit
i endif]|
v © Propetws T Tookox (B Tests Explorer 3= Tests Resuts
Ln44 Col6 ChE 0/0/11/1 NS

Models\TrialTrunk\Travel Agency

And what happens if we run the procedure again? Nothing happens.
Why?

In this second run, attraction 2 no longer exists. Therefore, it has not
been loaded or removed.

What if we now try to re-insert the Chinese Wall, but forget to enter its
name? Let’'s try it.

We run the procedure. We open Work With Attraction, and don't see the
new attraction inserted. Of course, we forgot to enter its name and the
error rule we had declared is being triggered, preventing that record
from being added to the table!

If we had done this through the transaction, the user would have
received the message we specified in the error rule.

Where was that message when we tried to insert it through the business
component?

j TravelAgency - GeneXus Tral

File Edit View Layout Insert Build Knowledge Manager Window Tools Test Help

‘l'
$ KB Explorer

pen

Deprecated
DrectionsServices
X Analytics
& AnalytcsPurchase

X] Clipboard

& TrackingParameters

ola Domains
sD
Server
Socs
ola Domains
Y Customization
To Be Defined
Output

Models\ TrialTrunk\ Travel Agency

3

X

o X
» Release
2F Attmction X % InsedCategoryUpdateAttractions X 7] NavigationView X 4 Messoges [Resdonly] X O Properties * X
Structure 2| ¥ | Finter >
Name Type Descripbon 1s Collection A
Messages Meszages
Type
- Message
*u VarChar(128 L)
* Descripton VarChar(256; Descripton
MessageTypes, GeneXus
va
© Propews T Tookox (B Tests Explorer 3= Tests Resuts

0/0/1

1

The transaction has a screen to show errors to the user, but the
business component does not. Consequently, error handling is also left
to the developer.

How do we obtain them?

The KB Explorer has a group of References, which we will talk about
another time, but it will always contain a GeneXus module, with
functionalities already implemented to be used in our KB. In particular,
there we will find an SDT called Messages. It is a collection of items
consisting of an ID, a type, and a description. The type is also
predefined in the module. It is numbered and indicates the type of
message in each case: warning, error, information, debug.

18

Error handling

= new()
.Countryld = find(Countryld, CountryName = "China")
.CityIld = find(Cityld, CityName = "Beijing")
.Categoryld = find(Categoryld, CategoryName = “Monument")
If &att t .Insert()
Commit
else
% = &att tion.GetMessages()
for & in &
print MessagePB
cndfor\i
endif
[
Layout *
= MessagePB
Bmessage 1d AttractionNamelsEmpty
. g » 1
{’M(m:y“;“ » The name must not be empty
%

&
r("The attraction name must not be empty", AttractionNameIsEmpty)

if AttractionName.IsEmpty();

Every time an operation is executed on a Business Component variable,
you can obtain the collection of messages generated by that operation
with the GetMessages method. We will have to define a variable of the
data type returned by that method in order to manipulate its result.

For example, just to be practical, let's show the result in a PDF file. We
will run through the collection of messages generated with the forin
command that allows running through collections, among other things.
For this we define a variable of the data type of the message collection
items. And we print every message of that collection in the output.

Let's enter the outputfile rule, and try it.

We run the procedure, and here is the output...

Only one item was obtained in the message collection, with an empty
ID, of type 1 -which is an error. Its description is exactly what we
entered in the error rule of the transaction.

If we look at the syntax of the error rule, we see that it allows a second
parameter, which is optional. This parameter will allow defining the ID

of the error for the business component's message. For example, we
will assign it this value. If we try now... there we see it.

19

Error handling

AnractionNamelsEmpty

0
Msg("The attraction name must not be empty”, AttractionNameIsEmpty)

if AttractionName.IsEmpty(); The attraction name must not be empty

n = new() I
1 n.Countryld = 22
/&attraction.Countryld find(CountrylId, CountryName “China"

ityld, CityName = "Beijing”)

.CityId = fi
.Categoryld = find(Categoryld, CategoryName = “Monument”) PossigaieyHoiFoumd
1
If Satt B -Insart() No matching ‘Country’
Commit
else
= &att tion.GetMessages()
for & in &
print MessagePB

endfor
endif

ForeignKeyNotFound
1

No matching ‘CountryCity’.

Let's do one last test: let's modify the rule so that it is no longer an error,
but a message.

Also, let's enter a non-existent country identifier as Countryld to see
how the insertion fails due to the referential integrity control. Let’s try it.

When trying to insert, three messages were displayed: the first one is a
Warning message, and it would not have caused the insertion failure by
itself. However, the second and third ones could have caused the
failure because they are of the Error type. The internal ID is this, and the
message displayed to the transaction user when the country integrity
fails is, NOT COINCIDENTALLY, No matching 'Country'.

Also, a referential integrity error will be thrown when trying to insert the
city, which depends on the country.

20

Business Component
) &attraction
%] Attraction
¥ Attractionid &attraction.Load(Pk)
P Attractionid N ;
{ AttractionName &attraction.Insert()
AttractionName
Countryld - &attraction.Update()
¥ CountryName Countryld A . A
A Cityld CourkryName &attraction.Delete()
¥ CityName Cityld +
A Categoryld . R . 5 0
CityNam e &attraction.Success()
¥ Cat N T . .
stegoryiame Categoryld &attraction.Fail()
\aé AttractionPhoto - { .
AttractionAddress CategoryName &attraction.GetMessages()
AttractionPhoto
+ _]
Attract Addre: "
ractionfadress Zattraction.Mode()
LOGIC Rattraction.Save()

&attraction.InsertOrUpdate()

Having said that, we have seen the most relevant aspects of updating
the database with Business Components.

In this way, we saw that from the transaction it is possible to create a
data type that is like an SDT, but that allows operations to be performed
on the database from methods.

These operations preserve the logic of the transaction. Although we
didn't go deeper into it, clearly not all the rules and events of the
transaction will be incorporated into the business component. The ones
that have to do with the interface obviously will not. The Parm rule is not
taken into account, either.

In addition to allowing these operations on the database, we can check
the result of the last operation performed, as well as obtain the
messages generated, in a collection.

There are more methods to study. For example, the Mode method
returns the mode of the business component: if it is Insert, Update,
Delete.

The Save method will try Insert or Update according to the variable's
mode.

Also, the InsertOrUpdate method will always try to insert, and if it fails
because of a duplicate key, then it will try to update.

The Insert, Update, Delete and InsertOrUpdate methods can also be
applied to Business Components collections.

21

Business Component

&attractions

Attractionld

AttractionName

Countryld

CountryName

Cityld

CityName

Categoryld

CategoryName
AttractionPhoto

AttractionAddress

Attractionld
AttractionName

Countryld

CountryName

Cityld

CityName

Categoryld

Attractionld
AttractionName

Countryld

CountryName

CategoryName

AttractionPhoto

AttractionAddress

Cityld

CityName

Categoryld

CategoryName

AttractionPhoto

AttractionAddress

&attractions.InsertOrUpdate()

}

InsertOrUpdate()

}

InsertOrUpdate()

l

InsertOrUpdate()

So, if the &attractions variable were a collection of the Attraction
Business Component -in this case, a collection of three Attraction
items-, applying the InsertOrUpdate method would be the equivalent of
running through the collection and applying the method individually to

each item.

The result will be True if the individual results were all True.

22

Business Component
Only in Procedures?
) &attraction
=55 Attraction

¥ Attractionid &attraction.Load(Pk)

O Attractionid N

{’ AttractionName . 1 &attraction.Insert()
AttractionName

2 Countryld - &attraction.Update()

¥ CountryName Countryld . A

A Cityld CountryName &attraction.Delete()

¥ CityName Cityld *

A Categoryld . 2 . 0
CityName &attraction.Success()

¥ Cati N T -

A:t Egc:w :hmte Categoryld &attraction.Fail()

N ractionFnoto - 4

‘e AttractionAddress CategoryName &attraction.GetMessages()
AttractionPhoto

-) I
A A .
SIS &attraction.Mode()
LOGIC Rattraction.Save()

&attraction. InsertOrUpdate()

The last important thing to mention is that a variable of Business
Component type can be used in any object that has some section of
code, not only procedures. This means that we can update the
database; for example, from a panel event that requests or displays data
to the user, as we'll see.

It can also be done from events in transactions, although in that case
there are some limitations that we will not see here.

23

More

« InsertCategoryUpdateAttractions proc
« CategoriesAndAttractions web panel

+ MassivelnsertRemove panel

In the following video, we will apply everything seen here in an
example. You may skip it, except for the final part.

There:

We will implement again the procedure created here, so that it inserts a
new tourist attraction category: “Tourist Site.” We'll change all the
Beijing attractions that had the “monument” category and assign it the
new one.

We will see how to do this through an interactive web panel, which
offers to do the above, but also to undo what was done, leaving
everything as it was.

Lastly, we will create another web panel that will allow us to remove the

information from both tables, Category and Attraction. This will be
taken up again later, so we recommend watching at least this final part.

24

To be continued...

Of course there's a lot more to see, but we'll leave that for the next
level. If you're interested, you can search for videos related to this topic
in the GeneXus Analyst course.

25

GeneXus

