
Database Update

Using Business Components. Justification.

Transaction: Insert, Update, Delete

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Christ the Redemmer 1 1 2

5 Smithsonian Institute 4 2 1

6 Matisse Museum 2 2 1

7 Forbidden city 3 1 2

So far, we have only updated database information through transactions,
i.e. interactively through a graphical interface.

Business Component: Insert(), Update(), Delete()

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Christ the Redemmer 1 1 2

5 Smithsonian Institute 4 2 1

6 Matisse Museum 2 2 1

7 Forbidden city 3 1 2

AttractionId 7

AttractionName Forbidden city

CountryId 3

CountryName China

CityId 1

CityName Beijing

CategoryId 2

CategoryName Monument

AttractionPhoto

AttractionAddress

Next, we will look at how to update the database information using code.

We will give priority to one of the two ways: updating through Business
Components, and we will see why.
We will work with the transaction structure as if it were an SDT variable,
taking into account the rules of the transaction. Through that variable we
will insert, change or delete data from the database. It will be like using
the transaction, but without its screen.

Procedure: New, For each, Delete

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Christ the Redemmer 1 1 2

5 Smithsonian Institute 4 2 1

6 Matisse Museum 2 2 1

7 Forbidden city 3 1 2

The other way to do it is through special commands that can only be used
within procedure-type objects. We'll see them later, in another video. But
in this case there is independence from the transaction. We work directly
on the tables, which has its drawbacks.

So let's study this first option, the one with the highest level, and therefore
the one that basically will be more relevant to us.

Insert through the transaction

We will first take a closer look at what happens when we want to insert a
new tourist attraction using the transaction.

We have changed the order of the attributes, so that the city is now part of
the country, which affects the form.

We will add an error rule to avoid leaving the transaction name empty.
If now you press the Control key and the space bar, this little window
opens and offers you all the elements that you could put in this part of the
code. If you type the letter "N" you'll find the attribute you're looking for.
This is a way to avoid making typing errors. The other way is to select
Insert > Attribute, whose shortcut is Control+Shift+A, and there select
Attraction Name.

To this transaction we had applied the Work With pattern, and that's why
all these other rules are appearing, automatically added by the pattern to,
for example, allow invoking the transaction from the Work With, passing it
the mode (insert, update, delete) and the attraction identifier.

To more easily understand what we are trying to do, we would rather be
able to invoke the transaction directly, without parameters, as it was
before the pattern was applied. We can remove it by eliminating the

instance from here... or, since we will need it for later, save this transaction
with another name; for example, this one.

Parallel transactions

Table: ATTRACTION

This transaction will be identical to the other one, except for its name and
the fact that it doesn't have the pattern applied. The rules that came from
the pattern and the events have remained, so we just delete them. We
leave the error rule and delete all the events that have been added by the
pattern.
Note that the table on which this transaction will insert, change, and
delete records is exactly the same as the table in the Attraction
transaction. Why? Because the identifier is the same. These transactions
are called parallel transactions. They share the table, but the programs are
independent.
To this one, for example, we could remove even the Error rule, and
therefore it would allow inserting records that the other would not.

Transaction: Insert, Update, Delete

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Christ the Redemmer 1 1 2

5 Smithsonian Institute 4 2 1

6 Matisse Museum 2 2 1

We press F5 to run it.

It opens with empty fields, and the identifier field is active, waiting for the
user to enter a value and infer which operation will be processed. It can
be an insertion, or otherwise an update or deletion.

Thus, when leaving the field, GeneXus will search for a record with the
entered value in the table. If it exists, the transaction will remain in Update
mode, and the fields with the corresponding values. On the other hand, if
it does not exist, the transaction will be in Insert mode and all the fields
will be empty (unless there is some Default rule that depends only on the
mode, or some assignment that is only conditioned with If Insert. For
example, AttractionName equals something If Insert. In this case, there is
none).

Since AttractionId is auto-numbered, the user will probably leave the
value 0 when trying to insert a new attraction. The transaction will then be
in Insert mode. If he now leaves the next field, AttractionName, without
entering a value, an error message will be displayed because of the rule
we had programmed. But even so, it allows us to continue entering the
others because after confirming we will not be allowed to save anyway,

City.

In the case of foreign keys, when you exit the field it is checked whether a record

referential integrity error is thrown. We can also continue, but, as with the other

the key its name is already inferred. The same happens for the city.

Here is another foreign key, the category, which cannot be left with a non-existent
value, but which can be left empty. Remember we indicated that the attribute
would accept nulls. But we know its category will be Monument.

Note that to make these referential integrity checks and bring the inferred names
it was necessary to go to the server, which is the one that actually controls the

browser are there to make the user experience more agile, without any downtime.
This is called Client Side Validation. But all this will have to be repeated on the
server when the user confirms.

Of course, the fields that are not default foreign keys that do not accept nulls ,

photo, but no address.

happened in the background?

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Christ the Redemmer 1 1 2

5 Smithsonian Institute 4 2 1

6 Matisse Museum 2 2 1

7 Forbidden city 3 1 2

AttractionId

AttractionName

CountryId

CountryName

CityId

CityName

CategoryId

CategoryName

AttractionPhoto

AttractionAddress

0

Forbidden city

3

1

2

After pressing Confirm, all the information entered by the user in the fields must
travel to the server, which will start again from scratch to ensure that there are no
security violations. The browser is always a hostile environment. The server is in
charge of making the program do what it is coded to do, in a time frame that is
transparent to the user. Also, it is the only one allowed to operate on the
database.

You can imagine, just for practical purposes, that it is like taking all the attributes
of the transaction structure and building with them a SDT that is loaded with the
values that the user interactively gave them in the form (the ones that matter are
the non-virtual ones; that is, the ones that will be physically in the table. Here they
are these ones).

With this structure loaded on the server everything is executed from scratch: the
validations, rules and formulas, passing through each element just as the user did
interactively.

If it finishes without any errors, then it inserts the record in the database.

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Christ the Redemmer 1 1 2

5 Smithsonian Institute 4 2 1

6 Matisse Museum 2 2 1

AttractionId

AttractionName

CountryId

CountryName

CityId

CityName

CategoryId

CategoryName

AttractionPhoto

AttractionAddress

0

3

1

2

If after pressing Confirm we leave the AttractionName empty, the error rule will be
triggered and the insertion in the database will not be allowed, showing the error
to the user in the browser. The same will happen if we leave a non-existent foreign
key value.

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Christ the Redemmer 1 1 2

5 Smithsonian Institute 4 2 1

6 Matisse Museum 2 2 1

7 Forbidden city 3 1 2

AttractionId

AttractionName

CountryId

CountryName

CityId

CityName

CategoryId

CategoryName

AttractionPhoto

AttractionAddress

7

Forbidden city

3

1

2

China

Beijing

Monument

But if everything goes well, in this case as AttractionId is auto-numbered, when it
is inserted in the table it will be given the corresponding number and the SDT will
also be updated, with that data and with the corresponding inferred data and
formulas (there are no formulas here) in case something else has to be done with
it (if it were a two-level transaction, we would still need to work with the lines).

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Christ the Redemmer 1 1 2

5 Smithsonian Institute 4 2 1

6 Matisse Museum 2 2 1

AttractionId

AttractionName

CountryId

CountryName

CityId

CityName

CategoryId

CategoryName

AttractionPhoto

AttractionAddress

7 Forbidden city 3 1 2

What we see at runtime is that after the insertion the screen is empty, with the
message that the data was successfully entered. The transaction returns to Insert
mode; that is, it is ready again for the user to enter a new attraction. We can also
think that this structure is deleted from the server, to be created again when the
process is restarted.

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Christ the Redemmer 1 1 2

5 Smithsonian Institute 4 2 1

6 Matisse Museum 2 2 1

7 Forbidden city 3 1 2

AttractionId

AttractionName

CountryId

CountryName

CityId

CityName

CategoryId

CategoryName

AttractionPhoto

AttractionAddress

7

Forbidden city

3

1

2

China

Beijing

Monument

If now in the key we enter this value, 7, and exit the field... we will see this in the
browser. The transaction will have gone to the server, which in turn will go to the
database to query for the existence of a record with that value. It will find it.
Again, we can think that it loads all its values (the physical ones, inferred ones,
and formulas) in a structure like the previous one and sends it to the client, with
the information that now the transaction will be in Update mode.

And again, the user will interactively make the desired changes; for example,
delete the category (which will be allowed because it accepts nulls). After
confirming, everything is done again on the server: the database record is loaded,
the changes made in the client are applied, and field-by-field validation is
performed, triggering the corresponding rules. If nothing fails, the table record
will be updated in this case, by removing the category , and the structure will be
updated, also removing the category name, which was inferred.

If no other rules in the transaction prevent it, the browser will show the updated
information and a message indicating this. Note that the transaction is in Update
mode. We could change this record again, for example, by adding the category
again.

If now we wanted to delete it, it would be enough to press the Delete button, and
in the server, with the structure already loaded it would be easy to look for

attraction 7 in the table to delete it.

This makes it quite clear that if we manage to work with a structured
variable like the one we imagine, which uses the transaction internally in
the server, encapsulates the rules of the transaction, and also allows
performing operations on the table, we could insert, change, and delete
data from the database through code, complying with the logic declared
in the transaction.

Business Component

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Christ the Redemmer 1 1 2

5 Smithsonian Institute 4 2 1

6 Matisse Museum 2 2 1

AttractionId

AttractionName

CountryId

CountryName

CityId

CityName

CategoryId

CategoryName

AttractionPhoto

AttractionAddress

7 Forbidden city 3 1 2

7

Forbidden city

3

1

2

China

Beijing

Monument

&attraction

+

LOGIC

&attraction.Insert()

&attraction.Update()

&attraction.Delete()

This is none other than a Business Component.

From the transaction structure with its logic (and by logic we mean
controls for duplicates not only primary key, but also candidate keys ,
referential integrity, its rules and some of its events), a kind of data type
similar to a SDT, but much more powerful, is obtained.

Then, it will be enough to define in almost any program a variable of that
data type and manipulate it, which is what we will see next.

training.genexus.com
wiki.genexus.com

