






Database Mocking enables you to save the data sets required for a unit test to use them in 
every execution of it, regardless of database state.

Mocking allows you DB state independence because regardless of the data you have in the 
DB, tests execution goes against the mock file saved for the executing test.

When tests execute using mocking, no previous set up is needed, since all the data required 
for the test in order to run is already stored in its mock file. A mocked test will have fastest 
execution times since no access to an actual database is performed, data is obtained 
directly from in memory data (loaded from its mock file).

The alternative to DB mock is to run a DB initialization script/procedure before executing 
the test, which is slower and hence more expensive.





Database Mocking is a technique available for unit test objects, 

allowing to capture the desired database state (for different tables) in 

your tests to let specific data sets ready for future unit test execution. 

So, the first step is to have in place all the data required for the unit 

tests to execute properly. This is, if the test requires that a register 

doesn’t exist, or that an account has a balance of certain amount, the 

database must have all the required information in order to execute 

this test at recording time. All the setup you should do every time 

before executing the test if you did not have DB mocking feature

Using this technique, you can focus on getting the unit test data sets 

ready once (in a real database), and then use it on different unit test 

phases. In other words, Database Mocking is a simulation of a 

database with fewer records.



Mocking works by recording data (SQLs / results) used for a test by 

listening for all sentences and responses during the Record 

Mocking Data operation. In GeneXus, database sentences are 

stored in a json file (as mocking data). You will be able to save the 

set of data used in each unit test and share it with all the team.



Finally, once the Record Mocking Data operation ends, mocking data 

will be stored in a KB file object. A reference to this file is added 

through a property called Mock Data File in the unit test object.

Also, the Mock Data property is set to True. This allows to 

enable/disable the mock data usage without having to delete mock 

file reference.





Let's see how to generate the database mock file for 

CheckBalanceForTransferUnitTest.

Remember that we tested this proc with three test cases: 

rejected transfer for not enough balance, an approved transfer 

and an invalid account.



So, to use these test cases we need to set the database status.

In this case we need the AccountNumber 5 with balance 0, the 

AccountNumber 6 with balance enough to transfer 500 dollars 

and that AccountNumber 8 doesn’t exist in database.

You can see the current database status of Account table.



Select the option “Record Mocking Data” doing right click over 

the unit test tab.



This operation runs the test and saves the database sentences in a 

KB file. You can see the database sentences quantities and the 

Mock File name in the GXtest tab of the GeneXus Output.

From now on, when we run the unit test it will run using the recorded 

data instead of the database. That means that if the database 

changes, it doesn’t affect the unit test results because the mock file 

contains all the data we need to execute the unit test.



You can see the created file going to Files in the KB Explorer 

window.



Right-clicking and selecting the option “Edit File 

Tests_CheckBalanceForTransferTest_MockDataNet…” you 

can open the file in your installed text editor to see the stored 

sentences and their results.



If you open the file, you can find a json structure with the database 

sentences.

During the recording, the database sentences are stored in order 

(order is relevant) so it is expected that the test will run the sentences 

in the same order that was recorded. Consequently, if over time the 

table navigations change or database sentences are different, 

mocking data will need to be recorded again.



When you execute the Unit Test after recording, now with Mocking, 

you can see in the Output a message that shows how many 

sentences were loaded from Mock file.

In case the tests need some data that was not recorded during the 

recording stage, that query will use real database data sources to get 

the answer. This will run the test you've selected using your current 

data sources/databases. 

So, ensure you have the database in the required state so your 

recording can be checked into GeneXus server and add value to 

your team.



Note that the unit test properties were updated, the test has the 

“Mock Data” property in True.

Now, you can Commit the Unit Test and the Mock File to 

execute using the file in other environments and not have to set 

the database each time to execute the test over the procedure 

that you need to test.



Let’s see how to manage dynamic data in the recorded Mock files. 



Now that we know the Mocking DB concept, let’s see an 

example of a recording with dynamic data.

We will mock the DoTransferTest unit test. It saves a new 

transfer in the table Transfer with TrasferDateTime and 

TransferId being dynamic data.

First, we set the database status with the approved and 

rejected transactions, and we select the option “Record 

Mocking Data” to generate the Mocking file.



The test cases include an approved transfer and a rejected transfer.



After we select “Record Mocking Data”. As you can see, it has 

recorded 5 database sentences.

Let’s run the Unit Test using the Mock File just recorded as it is.



You can see warnings in the Output because a mismatch occurred 

between data recorded in the mock file and data requested during 

the test execution. As dynamic data is involved in the database 

operations, it changes in the execution and doesn't match with the 

data stored in the mock file. This happens when you have dynamic 

data for your sentences, let's say, an autonumber PK or a Date Time, 

for example.

In these cases, as you can read in the warning, results for the 

sentence will return from actual database. To take these results from 

the Mock File, it is necessary to modify the type of matching by 

setting the field KeyPattern while editing the mock File.

In this example, the mismatch is with the dynamic DateTime attribute 

of the table Transfer. So, let's modify the Mock File by adding regular 

expressions.



In the KeyPattern field of the Mock File it is possible to embed 

regular expressions so that they do not cause a mismatch 

when executing the test.

We suggest to copy and paste the value of the Key field in the 

KeyPattern field value, and then substitute the recorded 

DateTime and GUID for a regular expression that matches the 

value we expect.



If we run the test again, the test executes the sentences read 

from the Mock File successfully.



Again, once you have your mock data ready, you can commit the 

tests with Mock property in True and the Mock files to GeneXus 

server and tests won't depend on the state of the database used by 

other developers. And, more importantly, its success won't depend 

on the different environments used by your continuous integration 

pipeline either.

If your test is successful in your local environment it will work the 

same in any other environment (as long as the version of the objects 

is the same).

Note that you will prefer database mocking in tests without database 

assertions, as in these examples, in which we checked the output 

parameters. When the test checks the impact in the real database 

you don’t want to use the DataBase Mocking. In those scenarios it is 

desirable to have DB initialization scripts instead.




