GeneXus’

by Globant

GeneXus

Benefits of Database Mocking

GeneXus

DB state Easier
independence execution
Faster No setup
execution needed

Database Mocking enables you to save the data sets required for a unit test to use them in
every execution of it, regardless of database state.

Mocking allows you DB state independence because regardless of the data you have in the
DB, tests execution goes against the mock file saved for the executing test.

When tests execute using mocking, no previous set up is needed, since all the data required
for the testin order to run is already stored in its mock file. A mocked test will have fastest
execution times since no access to an actual database is performed, data is obtained
directly from in memory data (loaded from its mock file).

The alternative to DB mock is to run a DB initialization script/procedure before executing
the test, which is slower and hence more expensive.

Database Mocking in GeneXus

GeneXus

Database Mocking is a technique available for unit test objects,
allowing to capture the desired database state (for different tables) in
your tests to let specific data sets ready for future unit test execution.

So, the first step is to have in place all the data required for the unit
tests to execute properly. This is, if the test requires that a register
doesn’t exist, or that an account has a balance of certain amount, the
database must have all the required information in order to execute
this test at recording time. All the setup you should do every time
before executing the test if you did not have DB mocking feature

Using this technique, you can focus on getting the unit test data sets
ready once (in a real database), and then use it on different unit test
phases. In other words, Database Mocking is a simulation of a
database with fewer records.

4 2

=
S |
- e. Record Mocking Data

(

Mocking works by recording data (SQLs / results) used for a test by
listening for all sentences and responses during the Record
Mocking Data operation. In GeneXus, database sentences are
stored in a json file (as mocking data). You will be able to save the
set of data used in each unit test and share it with all the team.

[\
JSON

Finally, once the Record Mocking Data operation ends, mocking data
will be stored in a KB file object. A reference to this file is added
through a property called Mock Data File in the unit test object.

Also, the Mock Data property is set to True. This allows to
enable/disable the mock data usage without having to delete mock

file reference.

First Database Mocking example

GeneXus

Let's see how to generate the database mock file for
CheckBalanceForTransferUnitTest.

Remember that we tested this proc with three test cases:
rejected transfer for not enough balance, an approved transfer
and an invalid account.

o
SQLQueryl.sql - EC2..Xrest (Gutest (71))* = X
ssaxex Geript for SelectTopNRows command from SSMS **=w=x
SELECT [AccountNumber]
[AccountDescription]
[AccountCurrency]
[AccountCreationDate]
[AccountBalance]
[Accountuser1d]
FROM [6X_KB_DemoEbankingGXtest].[dbo]. [Account]
. 0% -
L B8 Rests il Messages
B o AccourtNumber AccourtDescpton AccountCumency AccountCreatonDate AccourtBalance AccountUserld
[1 5 Savings 0 2022-06-1822:34.09000 0.00 6
d 2 6 Savings 0 2022-06-18 223405000 100000.00 i7
Show : T e 5
© Query executed successfully EC2AMAZ-13038F\SQLEXPRESS .. Gutest (71) GX_KB_DemoEbankingGXtest 00:0000 2

So, to use these test cases we need to set the database status.

In this case we need the AccountNumber 5 with balance 0, the
AccountNumber 6 with balance enough to transfer 500 dollars
and that AccountNumber 8 doesn’t exist in database.

You can see the current database status of Account table.

Select the option “Record Mocking Data” doing right click over
the unit test tab.

= Tessesdts X o CheckDalgnceloiTramsferTest X
Sl 0205950892120 Erwd 05212 Blapssd 50 me
Testsan: *

oL ok s

© Tess Crecksbarceto TarglerTex 952 me)

) o
Qs][s

GXtest \NetCoresOLServerdos et \ petestTracerile 10120915 092115, pua*

Crecedislanceforlransferlest Vocedataf ilehet” crested

This operation runs the test and saves the database sentences in a
KB file. You can see the database sentences quantities and the
Mock File name in the GXtest tab of the GeneXus Output.

From now on, when we run the unit test it will run using the recorded
data instead of the database. That means that if the database
changes, it doesn’t affect the unit test results because the mock file
contains all the data we need to execute the unit test.

GeneXus

W D Coplorer X Tess Reschs X o4 CheckBalancelorTransferTest X |3] Files X
P] Noea [T Mod PIFoct Nodde x Mo 25

Vain Frogame 3 Name Modiie Dmscrppon Modfed Date Last User import Dste Last Busid Dste.

L '"‘“’ Modide I o) Tesss Crech@usnceForTrsnsterTest MockDataFilebet Roct Madule Tuwts_Chack Bularce For Tramber Tenl_ 3192022927 AM EC2NMAZ Y HOUE S Aaminstrator

(7 AmatartChatot IR T Vo m TR T TR

e D oFTIMAE_TTF R Wt OSTIMA_B_TTF S22 BHPU ECOMAAZ-13036% Smirvetshor

P FioiGan T | PTSens_Boid s Roct Module PTSens_Boid 02022356 PH EC2MAZ- 120007 NVidministrstor

) | PTSens_slic_nf Roct Moduie PTSees_baiic_ ot D202 55 PH EC2MMAZ-1 2000 Sicminstrator

| PTSans Requiw of Root Module PTSans_Requisr of SR 5P ECRMAZ 13085 Aamenstrator

£ Bt mminBachofion) | 72-Rugutae Hodt Mo [PEreRE e yee—

a (."““"‘"" TrovsterTesss R | S\icos Roxt Medube EC2AMAZ- 13030 Fdminsstrstor

heckatanceror T rarater | est
5 ChockBolrnForTrammber Ten(Daln
£, CheckBalanceTorTransfeTestSOT
{9 DeTransteTests
[EntsenindBachofics
{1 Bxchange2sl
(7 Genexia

|

3 KB Exglorm Frebwwrcms

You can see the created file going to Files in the KB Explorer
window.

= TessResubs X % CheckBolance™orTranslerTes: X Files X

e

[Lset U

Teel_ 979000097128 EC24MAZ- 12000F Niadminestranos

U Tess CrecBsiancefc

Lawt Buikd Dte

3 mstcning odjec

Right-clicking and selecting the option “Edit File
Tests_CheckBalanceForTransferTest MockDataNet...” you
can open the file in your installed text editor to see the stored
sentences and their results.

ray™: [
{
Data™: {
Array™: [
5,
Jack”,
“Savings”,
o,
"2022-06-18722:34:99. 000",
0.0000,
6
]
]
),
"Key™: "5,False,SELECT TM1.[Accountlumber], 12.[UserName] AS AccountUserName, TM1.[AccountDescription], TMI.[AccountCurrency], TMI.[AccountCrestionDate], TML.([AccountBalence], TMI1.[Accous tuserld] AS Accountiserld
"KeyPattern™: ""
{
"Data™: {
AAAAAA Array™: |
S
e,
"2022-96-18722:34:09. 200",
100000, 0060,
7
]
]
),
“Key 6,False, SELECT TML. [Accountiumber], 12.[UserName] AS AccountUserMame, TM1.[AccountDescription], IML.[AccountCurrency], TML.[AccountlrestionDate], TML.[AccountBalance], TM1.[AccountUserld] AS AccountiUserld
“KeyPattern™: **
{
Data™: {
»»»»»» Array™: |
]
),
"Key": “8,False,SELECT TM1.[Accountumber], 12.[Userflame] AS AccountUserName, TM1.[AccountDescription], TM1.[AccountCurrency], TML.[AccountCreationDate], TML.[AccountBalance], TM1.[AccountUserld] AS AccountUserlq
"KeyPattern™: "*
" head™: 8,
" size™: 3,
*_tail": 3,

“version”: 4

If you open the file, you can find a json structure with the database
sentences.

During the recording, the database sentences are stored in order
(order is relevant) so it is expected that the test will run the sentences
in the same order that was recorded. Consequently, if over time the
table navigations change or database sentences are different,
mocking data will need to be recorded again.

[rites X o CheckBoleceTorTrasteTest X [T] Waigwion'iew X i= Tesss Resubs X

Slat 2020513054644 Fred 194545 Flapmesd | mct Unst tost emocution detals.

Tests ran: 1 @ IsmiCoeckPamyeforTmogerTen Covenge: %%
o = Stan Monday, Segsember 19, 2020 %46 44 AN
o %) @) B[a3
£ Tem CheckBaancerorTransierTeat (373 ma) Expected Ceesked
[[-

When you execute the Unit Test after recording, now with Mocking,
you can see in the Output a message that shows how many
sentences were loaded from Mock file.

In case the tests need some data that was not recorded during the
recording stage, that query will use real database data sources to get
the answer. This will run the test you've selected using your current
data sources/databases.

So, ensure you have the database in the required state so your
recording can be checked into GeneXus server and add value to
your team.

5 D Gl X B e x 0
. | o " ot Mae x | [T E[F | e
Narma Modde Dimscriptior Wodrbad Date Lot Uigar Import Dens. Lt Busikd D
b-‘ Teatn_CrachBaancaforTramsfer T Foot Modde A192002 ¥21 AM EC2AMAZ-13038F) Adm
B P ot Moo X2 85 M EC2AMAZ-130F i o
1] ol Mo

y value

£ CheckBalence or TransierTee

Y it B wniton et Ve
15 Chu Babarosicn Tt e TosDits
I, CheckBsisnce” o Transie TesSOT sabled warnings
Stardard F
- Pr—
fown managemers ranment property value
Jeir type Use Ervironment propsty vshue
i bl g1 g Use Eraranrsent propecty alue
Sersrits FOR UPD T
S Ml Hew I matcwng ooy,
Ouzu ' x tererate Object
Show: GXtest X as] [+ Foomcrat
Calkte From wokfiom Fahe
Mock Deta False
Mock Dets. True
File Tests CheckflalancelorTransterTest MockDatalleNet
Mock Deta False

§ KE Eaplorer | Prckerences

Note that the unit test properties were updated, the test has the
“Mock Data” property in True.

Now, you can Commit the Unit Test and the Mock File to
execute using the file in other environments and not have to set
the database each time to execute the test over the procedure
that you need to test.

Dynamic data management

Gene&_;g

Let’s see how to manage dynamic data in the recorded Mock files.

Now that we know the Mocking DB concept, let’s see an
example of a recording with dynamic data.

We will mock the DoTransferTest unit test. It saves a new
transfer in the table Transfer with TrasferDateTime and
Transferld being dynamic data.

First, we set the database status with the approved and
rejected transactions, and we select the option “Record
Mocking Data” to generate the Mocking file.

The test cases include an approved transfer and a rejected transfer.

15 tern e X o Ontton X
Ut Vet e asteon dhet e

Start: 202087912051 End 123652 Elapeed: | s
Tomtn v 1 € Tontn ol s Tt Covernge 100%
' Start Mondduy. Suplamber 19, 2022 12 38 52 PM
4 =
e DRI
PU— .
© Towtn DoTrmnwier Tant (730) Expwcind e =
- - T kagmmacsome
- - 2mmcmtenaien
ey
gix|a i e Autos
et _

17.11.2157, Module: 4.17.11.2085
B EngEXLest \GXLes Ermcut onData. fson

st. Result: OK. Elapsed: 730 ws
Models\DesclbankingGXtest \Net(oresQLServerddd\ueb\grtest Traces 11e_20220919_123651. gxd

s execution wes saved in 'C

Cruated

After we select “Record Mocking Data”. As you can see, it has
recorded 5 database sentences.

Let’s run the Unit Test using the Mock File just recorded as it is.

%27 End Elapund: | s et Vet esmtoen deotan

og

You can see warnings in the Output because a mismatch occurred
between data recorded in the mock file and data requested during
the test execution. As dynamic data is involved in the database
operations, it changes in the execution and doesn't match with the
data stored in the mock file. This happens when you have dynamic
data for your sentences, let's say, an autonumber PK or a Date Time,
for example.

In these cases, as you can read in the warning, results for the
sentence will return from actual database. To take these results from
the Mock File, it is necessary to modify the type of matching by
setting the field KeyPattern while editing the mock File.

In this example, the mismatch is with the dynamic DateTime attribute
of the table Transfer. So, let's modify the Mock File by adding regular
expressions.

Tests DoTransterTest mociDats-) ptest - Notepad - o
e [de Fome View Help
"Date™: {
ipnericray
s,
“Savirgs
s,
*1622.08.16722:34:00. 008", i IMPORTANT _
8:ooee, KetPattern™".. {{regular expression}}
:
1
are Jseham D 1 1. C . Date] 1. [Accounttalance], "Ml [Accounty) d raom 1 1w

1
1
15,9\ 19\/2002 3:36:52 P, 7364515¢ - Fed-ab2a-ancc -Bd49105a4c 3, True, INSERT TNTO [Transfer]([TransferSenderic counttissber], [Transferdmount], [Transf ferld], AL
*5,500,5, {{\\d{2, 21/ \\a{2, 2}/ \\8{2,8} \\{1,2}:\\{1, 2} \\{1, 2} (M| a0} }}, {{\\S{0}-\\s{a}-\\5{a}-\\5{a}-\\5{22})}, True, ISLRT 110 [Tramsfer]([Trans Fersace: 4 [transt
O
srray
N 1
1
1
*$80, 6, True, UPBATE [Acc FT [AccountBal. 5 pavaar dacunt WHER inthumber | = GAVESOUrCoACcoutism
“Dat

In the KeyPattern field of the Mock File it is possible to embed
regular expressions so that they do not cause a mismatch
when executing the test.

We suggest to copy and paste the value of the Key field in the
KeyPattern field value, and then substitute the recorded
DateTime and GUID for a regular expression that matches the
value we expect.

If we run the test again, the test executes the sentences read
from the Mock File successfully.

DemalbankingGiest - Genelis et

Commit

Again, once you have your mock data ready, you can commit the
tests with Mock property in True and the Mock files to GeneXus
server and tests won't depend on the state of the database used by
other developers. And, more importantly, its success won't depend
on the different environments used by your continuous integration
pipeline either.

If your test is successful in your local environment it will work the
same in any other environment (as long as the version of the objects
is the same).

Note that you will prefer database mocking in tests without database
assertions, as in these examples, in which we checked the output
parameters. When the test checks the impact in the real database
you don’t want to use the DataBase Mocking. In those scenarios it is
desirable to have DB initialization scripts instead.

GeneXus’

by Globant

training.genexus.com
wiki.genexus.com

