
Data Selectors

Data Selectors

Suppose that the Customer transaction of our application has the
CustomerStatus attribute to represent one of the three statuses (active,
on hold, closed) that a customer can have in the travel agency system. A
new enumerated data type has been defined for this purpose.

Suppose that in several places of the application we need to work with the
active customers entered between two given dates.
For example:

To generate a PDF list that receives a date range and shows the active
customers that were entered into the system between these two dates.

Data Selectors

To this end, we create a procedure called ListActiveCustomers.

If we were to implement the queries with what we know so far, it would be
through the following three conditions.

Since we are going to use these specifications in several places, to avoid
repeating them in all the places where we need them, we can make these
definitions in a single place, giving them a name, and from there on use
that name as a reference. That place is the Data Selector object.

Data Selectors

Structure:

ActiveCustomers
the conditions that we have just seen.
Let's look at the structure of this object.

In parameters, we declare the parameters that the Data Selector will
receive, which will then be used in Conditions. In this example, there will
be two variables, &DateFrom and &DateTo.

In Conditions, we enter the conditions that we want to be fulfilled to filter

status should be active. Also, the customer's entry date must be greater
than or equal to the DateFrom variable, and lower than or equal to DateTo.

Then in Orders, we will be able to indicate the order in which we want to
receive the retrieved data. In this case we enter CustomerAddedDate, to
sort the data by date.

Lastly, we have Defined By, where we can enter an attribute or list of
attributes that help to define the final base table. This may be useful to
solve some ambiguity problem in determining the base table. For this
example, we leave it empty.

Using clause

With Data Selectors Without Data Selector

Navigation View

everywhere this query is needed, making its maintenance easier (if we
need to change something in the definition, it is made in one place and
automatically applied everywhere the KB is used).

A Data Selector specifies, based on the parameters received, a set of
conditions and orders for the data in a centralized manner, so as to avoid
having to repeat the Order, Where and Defined by clauses everywhere
they are needed.

Let's see how, once the data selector has been created, we would use it
from our procedure that lists the customers.

We use it through the Using clause. Here we see how it should be used for
the example given.
Within this For Each command we send a Using clause to the
ActiveCustomers Data Selector, passing through parameters two variables
that will correspond to the dates by which to filter the data.
Its behavior is similar to the previous specification.

Even when determining the base table, or resolving its navigation, it is the
same as if instead of the DataSelector, its clauses had been written

directly.
Can order clauses and where clauses be added to the For each, in
addition to what already comes from the Data Selector? The answer is Yes.
The clauses add up.

In the navigation list, we can see that the Customer table will be run
through, it will be sorted by Customer AddedDate, the records will be run
through according to the filters that we applied within Conditions, and as
a restriction it will filter only the customers with active status.

operator

PDF Report: ListActiveCustomers (Source)

Navigation View

For example, suppose that we added the customers' country, and we
wanted to list the countries with active customers who have been entered
into the system between two given dates. To solve this by taking
advantage of our Data Selector we would do the following:

For each Country
Where CountryId in ActiveCustomers and we pass by parameter the
variables DateFrom and DateTo.
In this case, instead of the Using clause, we are using the IN operator.
In this way, we use the Data Selector as if it were an independent database
query.

There are two queries here: one of the Data Selector, which will return the
set of active customers who have been entered between the two dates
indicated and their corresponding countries. The other, corresponding to
the For Each command, will filter the countries included in that set.

In the navigation list we see that the entire Country table is run through,
sorting by CountryId, and as restriction (Constraint), is what we declared
inside the where clause of the For each; that is, we are interested in
filtering only the countries that are within the list of customers of the Data
Selector.

Using Data Selectors in formula

Here is a third example where we can use our Data Selector.
For this case, suppose that we need to show in a PDF list all the customers
with invoices and their amount, entering a range of dates to be able to
count only the invoices of active customers entered into the system
between those dates. If a customer is inactive or was entered outside
those dates, it will be included in the list but the number of invoices will
show zero.

Here we use the data selector within a formula, more specifically within
the Count formula.
Remember that the second parameter of an Aggregate formula is for
writing the conditions that must be met by the records in order to be

If we look closely at this case, we are running through the Invoice table in
the For each. As each customer can have N invoices, we place the Unique
clause to keep one of those invoices for the client, so with the Count
formula on the same table, we count the invoices of that customer, which
also comply with the clauses of the DataSelector: that is, if the customer is
not active, the Count will give 0, because for all its invoices the customer
will not be an active one. If instead the customer is active, only the
invoices within the considered range will be counted.

Ways to use Data Selector in For each

• IN operator

• USING clause Add where clauses in the For each

The attributes intervene in the determination of the base table of the For Each

The attributes do NOT intervene in the determination of the base table of the For Each

Different queries to the database.

Summarizing what we have seen so far, the Data Selector can be used in
two very different ways. If it is through the USING clause, there will be no
difference with having the Order or Where clauses of the Data Selector

aggregate formula, it is similar to entering there the conditions that we

As mentioned before, by declaring the Using clause, we will be telling it to
add the orders and filters of the Data Selector to those of the For each. For
this reason, the attributes included in the Data Selector will have to

On the other hand, if we use the IN operator in a Where clause, for
example, we are making an independent query, so the Data Selector, in
order to be resolved, will have to navigate its base table as if it were an
independent For each.
The IN operator is used when you want to perform a subquery, whose
result will be used later as a filter in the For each, as we have just seen.

Depending on the way in which we invoke it, the attributes defined within
the Data Selector will or will not take part in determining the table base of
the For each:

If we invoke the Data Selector through the USING clause, the attributes
declared within this object are involved in determining the base table of
the For each where we are calling it.

If we invoke it through the IN clause, the attributes of the Data Selector
are not involved in determining the base table of the For each.

Data Selector In Web Panel

Web Panel with base table Web Panel without base table

The three examples we have just discussed were made on procedural objects,
since we wanted to list the information in PDF files. But if we simply wanted to
display the information on screen through a Web Panel, how would we do it?

Let's go back for a moment to the first example, in which we were interested in
listing the active customers in a given date range, using the Data Selector we
created. But this time we will show the records on screen with a Web Panel.

In the Web Layout of our Web Panel, we declare a grid, and add the attributes we
are interested in listing.
Within the Grid properties, we see one called Data Selector. There we must enter
the name of our Data Selector that we want to use. This is similar to when a
procedure object is invoked from the For each through the Using clause.

Let's try it. We see that it throws an error, since we remember that the
ActiveCustomers Data Selector received by parameter two variables, the ones
that will contain the dates. So we will have to pass it this information.
For this we create DateFrom and DateTo variables of type Date. In the Start event
we declare them and for this test we initialize them with these dates.
To pass the parameters to the Data Selector we do it from the Parameters
property of the grid.

Now we execute again.
We can see that the clients are shown on the screen, filtering by the active
ones and between the indicated dates. Sorted by date entered, as defined
in the Data Selector.

Let's consider the same example, assuming that the Web Panel, instead of
having attributes, has variables. In this case it is a Web Panel without a
base table, unlike the previous one. For this reason, here it will not be
useful to use the Data Selector property of the grid, since to run through
all the clients we will have to do it with a For each, and it is there where we
must call our Data Selector. So in these cases, the statement will be
similar to the one we saw with the procedure object.

In the events section, we must declare the Load event of the grid. Inside a
For each with the USING clause followed by the name of our Data
Selector, passing it by parameter the variables that it will receive to filter
the dates.
And inside the For each, to the grid variables we assign the value of the
attributes that we are interested in showing.
Lastly, we define the Load command, and close the For each and the Load
event.

We execute, and see the desired results.

Order CustomerAddedDate
Where CustomerStatus = Status.Active
Where CustomerAddedDate >= &DateFrom
Where CustomerAddedDate <= &DateTo

Order CustomerAddedDate
Where CustomerStatus = Status.Active
Where CustomerAddedDate >= &DateFrom
Where CustomerAddedDate <= &DateTo

Order CustomerAddedDate
Where CustomerStatus = Status.Active
Where CustomerAddedDate >= &DateFrom
Where CustomerAddedDate <= &DateTo

Order CustomerAddedDate
Where CustomerStatus = Status.Active
Where CustomerAddedDate >= &DateFrom
Where CustomerAddedDate <= &DateTo

Data Selector

In short, the Data selector is an object that allows us to store a set of parameters,
conditions, orders, to be used/invoked from different queries and calculations,
and to reuse the same navigation several times.

So, where can we use a Data Selector? In all cases that make database queries.
For example, in the grids of panels and web panels or in groups of Data Providers.

You can find more information about Data Selectors in our wiki.

training.genexus.com
wiki.genexus.com

