
Data Providers

Language and Some Examples

1

INPUT OUTPUT

Data Provider

Transformation

Hierarchical structure

SDT

TXT
HTML
XML
JSON

FORMAT:

Database data

Not Database data / BC

The purpose of Data Providers is to obtain hierarchical information so that
those who need it can do something with it later.

Remember that in Data Providers the focus is placed on the output
language: a hierarchical structure indicates how that output is designed.
This is why we speak of a process of transforming the input data into this
structured output. This data that may or may not be from the database.

The way to represent hierarchical structures in GeneXus is through the
SDT object, along with the possibility of defining collections. Of course, a
Business Component can be thought of structurally as an SDT. That is why
in the Output property of the Data Provider we can specify both an SDT
and a Business Component. Also, there is a Collection property to indicate
whether the output will be a collection of that indicated data type, or if it
will be a single item.

Therefore, a Data Provider will always return a hierarchy to the caller (be it
an SDT, a collection of SDTs, a Business Component, or a collection of
Business Components).

Whoever invokes it, therefore, is responsible for doing what he/she needs
to do with that hierarchical information. For example, convert it into
another format for representing hierarchical data, such as XML or JSON
which are useful formats for interacting with third parties.

2

INPUT OUTPUT

Get Countries

Output:

Collection: False

ID 1

Name Uruguay

AttractionsQuantity 100

ID 2

Name France

AttractionsQuantity 200

ID 3

Name China

AttractionsQuantity 250

FORMAT:

Object X

In this example, there is a Data Provider called GetCountries, which will
return the data type that we have called Countries. As you can see, it will
be a collection of simple SDTs, each of which will take the name
CountriesItem.

In the Data Provider properties we will have:

The Output property, with the SDT object named Countries.
And the Collection property set to False, because we don't want a
collection of Countries; if it were set to True it would be a collection of
collections.

In this example, the Data Provider caller is assigning its result to the
countries variable of the same data type as the output. This result will be a
specific collection in memory, with specific values, those calculated within
that Data Provider.

Then, the program that is working with that variable can do anything with
it, for example, convert its content to JSON format.

3

FORMAT:
ID 1

Name Uruguay

AttractionsQuantity 100

ID 2

Name France

AttractionsQuantity 200

ID 3

Name China

AttractionsQuantity 250

Object X

Here, GeneXus offers different conversion methods between SDTs and
some of those other formats.

If a new format for representing structured information becomes available
in the future, the Data Provider will remain unchanged. GeneXus will
implement the conversion to that format, and we will only have to use it.

We can convert from SDT to another format, and vice versa: from that
other format to SDT.

This no longer has to do with the Data Provider itself, but with the
structured data types.
The country collection could have been obtained with a procedure
instead of a Data Provider, and the conversion part would be identical.

4

ID 1

Name Uruguay

AttractionsQuantity 100

ID 2

Name France

AttractionsQuantity 200

ID 3

Name China

AttractionsQuantity 250

OUTPUTINPUT

Data Provider

Let's see this example. Let's suppose that, in the context of an application
for a travel agency, we need to display on screen a ranking of countries,
ordered from highest to lowest by the number of tourist attractions
offered by each one.

In our reality we have the Country and Attraction transactions with the
following attributes.
A simple way to achieve this is to declare a Data Provider that returns a
collection of countries where for each one, in addition to its name and
identifier, its number of attractions is added. And then process that
collection in reverse order by that amount.

As we said, the Data Provider language focuses on the output, the
elements are calculated from the point of view of the hierarchy that will be
the result.

5

ID 1

Name Uruguay

AttractionsQuantity 100

ID 2

Name France

AttractionsQuantity 200

ID 3

Name China

AttractionsQuantity 250

OUTPUTINPUT

Data Provider

To represent this example, we create the following data structure that will
later be returned by the Data Provider. Next, we must load this SDT object
into the Data Provider's Source.

6

OUTPUTINPUT

Data Provider

Countries

CountriesItem
ID: 1
Name: Uruguay
AttractionsQuantity: 100

CountriesItem
ID: 2
Name: France
AttractionsQuantity: 200

CountriesItem
ID: 3
Name: China
AttractionsQuantity: 250

By dragging to it the SDT that will be the output of the Data Provider, the
structure to be loaded is displayed. We can clearly see how its language is
oriented towards the output statement.

7

OUTPUTINPUT

Data Provider

Countries

CountriesItem
ID: 1
Name: Uruguay
AttractionsQuantity: 100

CountriesItem
ID: 2
Name: France
AttractionsQuantity: 200

CountriesItem
ID: 3
Name: China
AttractionsQuantity: 250

Here we see the Input of our Data Provider, that is, where the data is being
taken from. There is a specified base transaction, attributes and an inline
formula. Clearly data is being taken from the database, to convert it into
the required hierarchical data.

8

OUTPUTINPUT

Data Provider

Countries

CountriesItem
ID: 1
Name: Uruguay
AttractionsQuantity: 100

CountriesItem
ID: 2
Name: France
AttractionsQuantity: 200

CountriesItem
ID: 3
Name: China
AttractionsQuantity: 250

The same result would have been obtained if the data had been statically
loaded into the Source, i.e. if the input was not taken from the database
but manually coded. As we can see, since there is no base transaction or
attributes, GeneXus will not bring information from the database.

9

MIXED

INPUT

It is also possible to have a mixed input: one part is statically coded and
another part is taken from the database.

In this example, we see in the Data Provider's Source that the output will
show three items from the statically loaded collection, and then N more
items loaded from the database from the Country table records.

Note that the from clause had to be moved so that it applies to the final
CountriesItem subgroup and not to all of them. As we saw, this static part,
manually coded by us, does not take records from the database.

10

• Groups

• Elements

• Variables

Group of groups

Group of elements

Group of elements (repetitive)

Data Provider Language

We will now look at the main components of a Data Provider's Source
language.

We will have groups, elements and we can also use variables.

The elements are analogous to the members of an SDT. If we think of the
hierarchy as a tree, groups are its branches and elements are its leaves.
That is, groups are compound elements; they can be made up of other
groups and/or elements.

Groups can be static or dynamically loaded; these are called repetitive
groups. In this example, the first three groups are static they are loaded
with fixed data , while the last one is a group that will have an associated
base table, and will therefore produce N items in the output, one for each
record of the base table considered.

A group with a base table will be equivalent to a For each command.

11

from BaseTransaction

[skip expr1] [count expr2]

[{[order] order_attributesi [when condi]}... | [order none] [when condx]]

[using DataSelectorName([[parm1 [,parm2 [, ...]])]

unique att1, att2,…,attn

[{where {conditioni when condi} |

{attribute IN DataSelectorName([[parm1 [,parm2 [, ...]]} }...]

Groups allow specifying a base transaction, although, unlike the For each,
here it is specified by preceding the name of the base transaction or level

Note that in this example instead of running through the COUNTRY base
table, what we have done is to run through ATTRACTION, using the unique
clause so that if there are many attractions in a country, only one is taken
into account, and for that one, all the other attractions that have the same
country are counted. In this way, only the countries with attractions will be
listed in the output.

12

from BaseTransaction

[skip expr1] [count expr2]

[{[order] order_attributesi [when condi]}... | [order none] [when condx]]

[using DataSelectorName([[parm1 [,parm2 [, ...]])]

unique att1, att2,…,attn

[{where {conditioni when condi} |

{attribute IN DataSelectorName([[parm1 [,parm2 [, ...]]} }...]

If static groups were not required, it would be the same to specify the
clauses at the CountriesItem subgroup level or at the parent group level,
Countries, CountriesItem collection.

In this case, then, declaring the clauses at the parent group level is
equivalent to doing so at the child group level.

13

Import Web Service
(GetCountries)

Dynamic Transaction

Let's see another example. Suppose that we don't want to store country
data in our database, but that we want to consume it from some service
that offers it. So we will create a Country transaction, but dynamic, that is
to say, that takes its data from somewhere else that we will have to specify
in the Data Provider, which will be built automatically for that purpose
once we set the Data Provider property to True.

GetCountries, and that by importing it the Countries SDT is created in our
KB.

In the Source we must first obtain the collection of countries, and then we
simply use the INPUT clause in the Country group to be able to run
through it, positioning ourselves in each item of the collection so as to
have a group with that item, assigning the corresponding value to its
elements, which will be the attributes of the dynamic transaction.

14

OUTPUT

Bills

BillsQuantity 2

BillDate 01/01/2021

CustomerName John Smith

BillInvoicePeriodStartDate 01/01/2020

BillInvoicePeriodEndDate 12/01/2020

BillAmount 4800

BillDate 01/01/2021

CustomerName Ann Brown

BillInvoicePeriodStartDate 01/01/2020

BillInvoicePeriodEndDate 12/01/2020

BillAmount 5000

We will now look at a slightly more complex case.
We have a Data Provider that will return as structure an SDT, which has a
collection of Bills and a Quantity element.

In our application we have the Invoice transaction, which has two levels
and the following attributes. The stand-alone Flight transaction, and the
Customer transaction.

What we want is that from the invoices that have been generated for each
customer between two given dates, a payment receipt is generated, for
the total of all those invoices. Between these two billing dates, it may
happen that not all customers have receipts to be generated, as they may
not have been billed in that date range. In the structure to be returned, it is
necessary to know how many receipts are obtained from the calculation,
and for this we have the BillsQuantity member.

If in the date range 01/01/2020 to 12/01/2020 there are only invoices for
the customers John Smith and Ann Brown, and the output will be as
represented in the image: an SDT variable with two members: one of
Collection type and the other of Numeric type. The collection will have
two items, as shown.

In other words, the DataProvider will return a structure with two elements:
the collection of receipts on one hand, and the number of items in that
collection on the other.

15

Output: BillsInfo
Collection: False

If we drag the SDT to the Data Provider Source, we will see how it is
initialized, where the Collection property will be left with its default value

BillsInfo, but only one element of that type which will contain, among
other things, a collection of Bills.

16

parm(in: &start, in: &end);Output: BillsInfo
Collection: False

We program the parm rule to receive in a parameter the range of billing
dates.

And then for the Bills group, which represents the collection, we specify a
base transaction.

Why do we place CustomerName without assigning a value to it? Because
its name is the same as the CustomerName attribute and the Customer
table is being navigated. So, it is possible to use this abbreviated notation.
It is the equivalent to writing: CustomerName equals CustomerName,
where the one on the left is the SDT member and the one on the right is
the Customer table attribute.

Note that the use of the variables is the same as in a For Each command.

There is a problem: in this case a Bill item will be returned in the output
even for customers who do not have invoices in the range received in a
parameter. How can this be avoided?

17

parm(in: &start, in: &end);Output: BillsInfo
Collection: False

One way is to change the base transaction to Invoice and keep the Invoice
records without repeating the CustomerId and with dates in the desired
range.

Then in the internal Sum we will count the totals of all the customer's
invoices that are in the same date range. As we have been saying, it is
identical to the logic of the For each.

18

language.

CardType.Full

CardType.Partial

Let's see another example. We want to populate with data the table
associated with a new transaction named Card, using its associated Data
Provider and data from other tables in the database.

We have the Customer transaction to record the customers of the travel
agency and Trip to record each trip or tour offered by the agency in a
given city. There is a sublevel with the customers registered for the trip.

Suppose that the travel agency decides that all customers who have

which will allow them to enjoy all services free of charge. And if they have

Each card has an autonumbering identifier, a customer and a card type,
for which an enumerated domain has been defined that supports only the

Now, we want the table associated with the Card transaction to be
initialized with the correct information, so we turn on the Data Provider

it will automatically create the DataProvider that is displayed, and will turn
on the Business Component property, to insert the cards that are returned
by that Data Provider when it is automatically executed in the first run.

How is the Data Provider Source declared?

20

CardType.Full

CardType.Partial

We will create a Business Component Card in the collection for each
customer. That's why a Customer base transaction is specified for the
Card group. We know, therefore, that it is a group with a base table.

We remove the CardId element from the Card group since the ID domain
of the CardId attribute of the transaction is autonumbered.

Next, note how the value of the CardType element is loaded using a
conditional inline formula. It will take the value of the enumerated
CardType.Full as long as the result of running the inline formula
count(TripDate) is greater than 3; otherwise, it will be assigned the value
CardType.Partial.

This formula will count the records of the TripCustomer table, filtering by
CustomerId.

Then, the CustomerId element, which will correspond to the Business
Component, is assigned the value of the CustomerId attribute of the base
table of the Customer group. We can use the abbreviated notation and
remove the assignment.
Here is an example where the Data Provider returns a collection of
Business Components whose data is obtained from another table.

Once again, it is identical to the case of a For each command.

21

training.genexus.com

wiki.genexus.com

training.genexus.com/certifications

22

