Populating a table with data using Business Component
and Data Provider

GeneXus’

[&] swrtPage X [5] MassivelnsertRemove X

EI MainTable
o

Remaove Data

Suppose that the countries and cities tables already have data. Since we
previously deleted the attractions and categories data, our objective will be to
initialize the categories and attractions tables with data so as not to start with
empty tables.

To do so, we open the “MassivelnsertRemove” web panel that was created in
the previous video, add a button labeled “Initialize data” and use the Data
Provider together with the Business Components that we've just studied.

BC BC BC BC
X i —
Category Category Category Category

| J
I

&categories

l

&categories.Insert()

If we could obtain a collection variable of Business Component items
corresponding to Category, loaded with the categories to be added to the
database, we will only have to apply the Insert() method to this collection
variable, because as we said in the previous video, this will allow us to Insert
all the items, that is to say, all the Business Components in the collection.

So, now we only need to obtain this collection. How do we go about it?

ol X
CE| 4] W | Fiter X
Name Freriemobaunicacliibiierrere:.
Description Ranking Countries With Attractio...

Data Provider

Expose as Web Servi¢ False
Module/Felder Root Module
Jualified Name RankingCountriesWithAttractions

Object Visibility Public

simple
Infer Structure No
Collection False \
collection

So far, we've known that a Data Provider allows us to return structured data, of
both simple and collection type.

In this case, we want to return a category collection, but these categories are
not structured data types; instead, they are Business Components.

However, the structure of a Business Component is exactly the same as that
of an SDT. Therefore, Data Providers will also allow us to load and return
Business Components, of both simple and collection type.

Describe data extraction logic here and use t anywhere you need &

Name Category_DP|
Descrption: Category_DP

Our solution will come from there. Let's create a Data Provider to load the
categories, and call it Category DP.

We drag the Category transaction to the Data Provider Source and see that it
writes the transaction structure. Note that to the left we have the Business
Component's elements, which will be saved in memory, and that have the
same name as the attributes even though they are not attributes.

Meanwhile, the attributes of the corresponding table are now displayed on the
right side. From there, the Data Provider will obtain the data to load the BC
that is saved in memory. If this is what we wanted, the Data Provider should
return a collection of this Business Component, because the table has many
records.

[@] SrtPage x [o Remove X ¥ DataProviderCountries X 5 Category DP* X « O Propertes P
Rules | Variables 2 ¥ | Filer
Category =1
{ 3| Nome Category_DP
Categoryld = CategoryId
Description Category_DP

CategoryName = CategoryName
Expose as Web Ser False

Module/Folder Root Module
Object Visibility Public

Infer Structure No

Output Category

I Collection True

Collection Nan CategoryCollection

Generate Objec True

In the properties we can see that the Output property now has the Business
Component value, but the Collection property is not set to True as we need.

So, we change it and the new Collection name property is displayed. By
default, it takes the Data Provider name. We change it to CategoryCollection.

[&] SrtPage X [} MassiveinseriRemove X 5 DataProviderCounties X ¥ Category DP* X

Rules | Variables

Category

2B {
CategoryId = 1
CategoryName = "Museum”

» Wil

Category

{
Categoryld = 2
CategoryName = “Monument”

Category
284
Categoryld = 3
CategoryName = “Tourist sit

In addition, we don't want to load this collection with data from the database;
instead, we want to assign it new values entered by us.

Therefore, we enter groups associated with the collection items one by one:

[&] StartPage X [5 Massiveinserifemove X 15 DataProviderCountries X 15 Category OP* X
Rules | Variables
Category
{ ‘ 3

CategoryName = "Museum

Category
{
CategoryName = “Monument™
Category
{
CategoryName = “Tourist sit

Since Categoryld is an autonumbered attribute, we don't need to assign it a
value when we want to insert a record. This is what we will do next, so we

simply delete this assignment:

[@] StartPage X [} MassivelnsenRemove X ¥ DataProviderCountries X ¥ Category DF* X

Rules | Variables

CategoryCollection

2B (I
Category
{

CategoryName = "Museum™

> [i]]

Category
{

CategoryName = “Monument

Category
{

CategoryName = "Tourist site”

And since we want to return a collection called CategoryCollection —even
though it's not necessary because by setting the Collection property to True,
the Data Provider knows that it will return a collection— to clarify the code we
can explicitly indicate what GeneXus has already inferred: to do so, we

enclose all the Category groups in the CategoryCollection group
corresponding to the collection.

[@] startPage X [5] MassiveinsertRemove ™ X

Web Form | Rules Conditions. | Variables
InitializeData’ -
Event 'RemoveData’ =
or each Attraction i
Ratt .Load(AttractionId) =
.Delete()

Endfor
For each Category
] .Load(CategoryId)
.Delete()
endfor
Commit
Endevent

Event 'InitializeData’
= Category_0P()| I
Endevent

Now we only need to invoke this Data Provider from the event associated with
the web panel button:

@] SartPage X 5 MassiveinsertRemove® X
Web Form Rules_ Conditions | Variables
InttializeData’ -

1 Event ‘RemoveData’

» (Wil

p For each Attraction
gatt t .Load(Attractionld)
4 .Delete()
5 Endfor
& For each Category
7 &Category.Load(CategoryId)
&Category.Delete()
9 endfor
10 Commit
Endevent

nt "InitializeData®
t = Category_DP() I
.Insert()

16 Commit
1 Endevent

and enter this in the database:

Describe data extraction logic here and use & anywhere you need &
Name Atraction_DP|
Descrption Atraction_DP

Next, we will have to initialize the attractions table. Likewise, we will create a
Data Provider called Attraction_DP.

[#] StartPage X [G1 MassivelnsertRemove® X 5 DataProviderCountnes X ¥ Category DP X ¥ Amaction DP* X
Rules | Variables

Attraction
(3

AttractionId =

AttractionName = AttractionName

Countryld = Countryld

Categoryld = Categoryld

AttractionPhoto = AttractionPhoto

Cityld = Cityld

AttractionAddress = AttractionAddress

We drag the Transaction (from which we had already obtained the Business
Component) and see that every element of the Business Component is
initialized by default with the corresponding attribute in the table.

o] StartPage X [o MassivelnseriRemove® X 15} DataProviderCountries X 5 Category OP X ¥ Amaction DP* X

Once again, we see that only the attributes physically present in the table are
taken into account, and that the attributes inferred in the transaction or
formulas are not included.

Since we're not interested in loading existing attractions (because we run this
Data Provider to load the initial data), we delete all these attributes and enter
these values manually. In addition, since the ID is autonumbered, we don't
need to assign a value to this Business Component element either. The
attractions' photos will be assigned later, so we also remove this attribute.

[@] StartPage X [G] MassivelnsertRemove® X ¥ DataProviderCountries X %5 Category DP X ¥ Attraction DP* X

Rules | Variables

Attractio |

{ 3

AttractionName = ouvre Museum 7
CountryId = find(CountryId, CountryName = “France")

Categoryld = find(Categoryld, CategoryName = “Museum")
CityId = find(Cityld, CityName = "Paris")

Attraction

AttractionName = “The Great Wall"®

CountryId = find(Countryld, CountryName = “China")
Categoryld = find(Categoryld, CategoryName = “Tourist Site”)
Cityld = find(CityId, CityName = "Beijing")

Attraction

AttractionName = “Eiffel Tower"

CountryId = find(CountryId, CountryName = “France")
Categoryld = find(Categoryld, CategoryName = “Monument"”)
Cityld = find(CityId, CityName = "Paris”)

Attraction

AttractionName = “"Christ the Redemmer”

We're assigning the Countryld, Cityld and Categoryld values by heart, which
means that they may not exist in the corresponding tables. If any of the values
doesn't exist, when trying to insert the records with the Business Component,
the corresponding referential integrity checks will be triggered and the insertion
will fail.

To avoid assigning values that may not exist, we will use the Find formula to
find the correct identifiers based on the name of the country, city or category.

[&] startPage X [51 Mass * X 15 DataProviderCountries X ¥5 Category DP X 5 Attraction DP* X
Rules | Variables
AttractionCollection
{ 3
Attraction 7:
{
AttractionNase = "Louvre Museum
CountryId = find(CountryId, CountryName = "France")
CategoryId = find(Categoryld, CategoryName = “Museum")
CityIld = find(CityId, CityName = "Paris")
Attraction

AttractionName = “Th

Countryld ind
Categoryld = find(Categoryld, CategoryName = "Tourist Site")
CityId = find(Cityld, CityName = "Beijing")

Attraction

{
AttractionName = "Eiffel Tow
Countryld = find(Countryld, CountryName = “France")
Categoryld = find(Categoryld, CategoryName = "Monument™)
CityId = find(CityId, CityName = "Paris”)

..... ctio

Note that the Find formulas are accessing the database only to search for the
identifiers corresponding to the names we've used, but the rest of the values
assigned to the Business Component are fixed.

Just like we did with the categories Data Provider, we must set the Collection
property to True because we will return many attractions. Also, we will adjust
the notation in the source by enclosing the groups inside the
AttractionCollection group to indicate that it is an attraction collection.

] StartPage X [MassiveinsetRemove X 5 DatsProviderCountries X 5 Category DP X ¥5 Zmraction DP* X -

Rules | Variables

AttractionCollection = |

. 3

Attraction #
{

AttractionName = “Louvre Museus™
Countryld = find(Countryld, CountryNase = "France)
Categoryld = find(Categoryld, CategoryName = “Museus™)

Cityld = find(Cityld, CityName = “Paris™)
AttractionPhoto = louvre.Link()

iz

Attraction

AttractionName = “The Great Wall”

Countryld = find(CountryId, CountryNase = "China")
Categoryld = find(Cate
CityId = find(Cityld, CityName = "Beijing")
AttractionPhoto = great_wall.Link()

yId, CategoryName = “Tourist Site”)

}
Attraction
{
AttractionNase = "Eiffel Tower™
Countryld = find(CountryId, CountryName = “France”)
Categoryld = find(Categoryld, CategoryName = “Monument™)
Cityld = find(CityId, CityName = "Paris”) -

To also load the attractions' photos, we may insert them first as image objects
in the KB...

Next, for each Data Provider group we may simply assign the name of the
image to AttractionPhoto.

Name Type Is Collection Description
5| &) variables
+ (4] Standard variables
* At Attraction Attraction
* Categlry Category Category
[=] Categories Category) Categores
T G fhvocors]

(@] StartPage X [G MassiveinsertRemove® X ¥ DataProviderCountries X
Web Form | Rules [Fvents * | Conditions | Varisbles

InitializeData’ -

Event ‘ResoveData’
For each Attraction

8attraction.Load(AttractionId)
Rat .Delete()

Endfor

For each Category
&Categ .Load(Categoryld)
&Categ Delete()

endfor

Commit

Endevent

Event ‘InitializeData’

iCategories = Category DP()
&Categories.Insert()
Commit
RAttract - Aannion_Dv()
attra .Insert()
Commit]

21 - Endevent

Now we only have to invoke the Data Provider so that it returns the loaded
collection...

]
Categories =1 Q
id lame
Attractions =1 Q X
Id Name Country Name Category Name Photo City Name

T

&

| .

Note that to be able to insert attractions, the categories must have been
created first; for this reason, the order is the one we used in the event code.

15 DatafroviderCountries X 15 Category OP X 5 Araction OP X [X] NavigaionView X 4R Team Development X (s

Comment

Update | History | Activity | Versions

Initialize categories and attractions through Data Providers returning Business Components
collections.

Pending Commits (8389) | Ignored Objects

v

v e 8
veEs
v ¥ s
v ¥
v ¥ Lal
v &
v ¥ el

1 Type
Transaction
Data Provider
Image
Image
Image
Web Panel
Image

Description

Customer
Category_DP

chnst

eifiel

forbbiden

Massive Insert Remove

matsse

= _—

9120 Root Module
9122_ Root Module

9122 None
9122 None
9122 None
a2 Root Module
9122 None

Recent Comments.

Y

TLast Synchronize | User -
77262016 113 ARTECHuacaggizno
77772016 432 P_ ARTECHacaggiano
77206 432 P ARTECHacaggiano
7772016 432 P_| ARTECHacaggiano
7772016 432 P ARTECHacaggiano
7772016 432 P ARTECHacaggano
7772016 422 P_ ARTECHucagoizno

Cancel Comme |

Let's select Commit in GeneXus Server.

|
simple / collection /'\ B |
| |

Data Provider / m "l'—'

&collectionVar = DataProvider()
&collectionVar.Insert()

In this video we saw how a Data Provider not only allows loading a structure
with data from the database, but also from fixed data.

In addition, it can also do it from other external sources, as you will see in
more advanced courses.

We've also seen that a Data Provider allows loading the structure of a
Business Component (and not only of an SDT) that can be of simple or
collection type.

Lastly, we saw that if the structure is of collection type, we can apply methods
that affect all the collection items in a single operation, such as insert() and
delete().

GeneXus’

training.genexus.com
wiki.genexus.com

