


To complete the most relevant aspects regarding the development of the Angular application 
for Desktop size we would still have to see how to implement the input fields, which in our 
case will be given only in the Contact screen.

There we can see that there is first a combo box for the user to select from a number of 
options the subject of their query. The description that we see outside the combo box will be 
the label of the variable. Also, that inside the combo box there is a suggestion message. When 
the user clicks there or on the little arrow, the options will expand for the user to select one.



Then there are four edit fields, where the user can enter personal data. These fields do not 
have a descriptive label because the invitation message that appears when no value has been 
entered in them makes it clear what the field is about.

When the user starts typing into these fields, the invitation message will disappear. It will 
reappear only if the user empties the field.



If we remember the preparation stage, we had entered two typography classes for these texts: 
one we had called form__text, for the label texts, and another we had called form__text-
placeholder, for the internal texts, precisely these invitation texts.



Note that I created a Contact DSO to style the panel of the same name, and added it to the 
root DSO, TravelAgency.

I'm going to copy these classes for our DSO. If I'm only going to have input fields in this panel, 
then I might as well just leave them here and delete them from the base DSO.



If we continue analyzing the page, I have another Edit field with a label on top, and at the 
bottom I have a field of Check box type, with the label on the left side.

It is important that we implement all these controls as variables with their labels, and not as 
two separate controls: a textblock control for the label and a variable control for the field itself. 
Why? Because, first, conceptually it is the most appropriate option, and second, and as a 
consequence, because it will have an effect on accessibility: if it is the same field, all the 
semantics are already understood. If they are two separate fields, they will have to be related 
and even then the same thing will not be achieved.

So what I want to show you in this video is how we model the User Interface of the control 
given that it will be unique. We have to model two things: the field itself and the label. But if the 
field is only one, then how do we do it?

I'll show it in detail for the first case and the rest you will be able to figure it out by yourselves. 
Anyway, I'll leave an .xpz file with part of the solution for you to complete it.



First let's see that clearly all the fields will go in a table, so that they are aligned.

Here I already created the variables that will be the input ones and inserted them in the tables 
we see. None of this requires new knowledge, it is what we have been doing, so let's not waste 
time looking at it again.



Now we are going to focus on the first variable. Once I inserted it, note that I placed as Label 
Caption the text that I took from the property in Figma.

By default, the variables in the panels are input variables, and for that reason the Readonly
property is set to False.

Note that I changed the default value to the Label Position property, so that it places the label 
above the field and not to the left, as the default value. In addition I configured the Invite 
Message property, so that this is the text that appears inside the field when it is empty.

Lastly, note that the way to make the variable not Edit type, which is the default value (it is the 
type of these below, for example), but a combo box, is through the Control Type property.



When this value, Combo Box, is chosen, the Values property appears in order to provide the 
options, that is to say, the names that the user will see on the screen for each option, and the 
value that will be stored internally in the variable when the corresponding option is selected.



We could add an item that corresponds to the empty or not selected value, and through this 
property we assign a text, which by default is the one that is encoded in this constant, and that 
is “(none)” (we are going to see it now at runtime). We could place here the text we want for 
the empty value, if we don't want to use the one that GeneXus shows by default, which, since 
the variable is of varchar type, will correspond to the empty string value. We could have set the 
variable as a numeric value, for example, because what will be shown on the screen are the 
names of the options, not the values. The user will never see the actual value. But I chose it to 
be of varchar type in case later I want it to be an Edit field instead of a combo.

Note also that by default the Accessible Name Custom property took the value of the Label 
Caption property.

We could run now, as I still haven't assigned classes to the controls, in order to clearly see the 
difference later.



Here we see the label and the invitation message, and we also see the names of the options, 
and this “None” that I mentioned.



We know that the class for the label typography was the one we had called form__text, and the 
one for the field itself, which will be for the combo options, the one we had called form__text-
placeholder. Then we will see the one for the Invite Message.



So we will associate this second class with our control... but this is only the typography class. 
Not the combo control itself. And we still haven't done anything regarding the label.



In Figma we see these radius and border properties... if we ask for the CSS code... we will have 
to take these two properties to GeneXus... this is the color of our gray200 token...



So I'm going to create a class to model the combo box part itself.

I'll call it form__combo-box... and here I copy the two properties and replace here with the color 
token.



And of course I assign it to the combo box control. So this control is going to have two 
classes: the one for the typography and the one that gives style to the combo box itself.

We could include both in one, or keep them separate, if for example we were to use only the 
typography in another control.



To indicate the color of the Invite Message, we have a GeneXus property... we are going to 
look for it filtering by the properties for controls of Attribute type (that is the same type as that 
of the variables).

Let's filter instead by “gx-in”... and there we see it. If we choose from here a color it already 
adds it.

Let's set the color token that we use for the typography class of the control.



Now, let's assign the class for the label... it will be gx-label-class. What I will do is assign a new 
class to it, which I will call form-label.

For now I will only define it including the typography class, but we will see that we will have to 
add more properties to it.

Let's run it to see what we have done so far.



It starts to take shape. But let's look at the combo text. It's stuck to the left edge... and the 
height of the field also looks bigger than Figma's.



If we inspect it... it has a height of 84 pixels... but if we go to Figma, the height should be 60.

In addition, the text should be 29, with a top padding of 16, and a bottom padding of 15... on 
the left of 38... and on the right... of 25.



Then we should add these properties to the class:

• padding-block, that is, padding in the vertical direction, of 16 pixels (the padding below was 
15, but let's leave the two of them with the same value, 16).

• And padding-inline, i.e. in the horizontal direction, of 38 pixels at the beginning, and 24 at 
the end.

• Also, let's specify the height of 60 pixels.



Okay, what about the label?

If I inspect it, I see that it is 40 high, which we will see is the line-height value of the typography, 
without margins or paddings.



Let's see what happens if, for example, I give this element (just for a quick test) a margin-
block-end of 49. There we see the 49 of the margin and the 40 of the height...



And if we add an inline start margin of 16...



It matches exactly what we see in Figma.



Then, to the label class we add the two properties.



. 



I wasn't very precise before: actually in Chechu's design we don't see anywhere the typography 
corresponding to the values that the user will enter in the fields.

Our form__text-placeholder class actually corresponds to the invitation messages.

In general, the invitation message has the same typography as the content of the field, except 
for the color. In addition, the invitation message is much lighter, usually a light gray.



And that is why there is a property to indicate the color.

So this value is correct, but what we don't know, then, is the color that the content of the field 
should have. It would be necessary to discuss this with the designer.



Possibly this would lead us to define another color token for the content... let's set, for 
example, this value...



...And here we would reference that token.



To better organize all this, I would associate the combo box with a single class that contains 
everything... and not two...



And then, in this class, I include the typography.



At this point we realize that the initial analysis we did of the typography classes we would 
need for the input fields was not thorough, and in truth this class should rather be called 
form__text-content...

Since this is the first time we use it, it's time to rename it.



If we don't delete it from the base DSO, then watch out because it is repeated.



I copied it to this one because remember that if I want to use the include rule, for now the 
class to be included must be in the same DSO.

With our previous solution (with the two separate classes for control), it was not necessary to 
have it here.



If we execute now... we have a problem, as we are not seeing the Invite Message with the 
color grey200, the light gray, but with the same as the typography class. This is because for 
now only the property gx-invite-message-color is valid for the Edit fields. That is to say, it will 
work for all these other fields, to which we haven't customized the style yet—all the default 
values are used—but it is what we have left to do.



To implement the separation line that we see in Figma, of 2 pixels and this color...



I placed this table of 2 dips high, to which I'm going to assign this content-separator class...



...where to the background-color I will give this value. 



Now we should continue doing what we did for this combo box field, for the others...

I will leave them as a task for you.

Note that these are Edit type fields without Label and with Invite Message... For the Edit type 
controls, you can define a series of things: for example, making suggestions as the user is 
typing... You may search in the GeneXus wiki and explore all the options.



This other variable is also Edit but it has a label at the top, and it doesn't have Invite Message...

And finally this other one is of Checkbox type, with the label to the left.

Note that among the control types for the variables we have many other alternatives that have 
to do with the User Interface, and that I also invite you to explore



This is the end of the most relevant aspects that I wanted to share with you about the 
development of the Angular application for Desktop size. From the beginning we said that for 
Desktop size we will only have to implement this application, the Angular one.



Later, when we get into the other screen sizes, both Tablet and Phone, the world is already 
divided into two paradigms: Angular (Web) and native.
That is, we will have to implement there the two variants. And in the native world, the Android 
variant and the Apple variant.

We are going to talk about this in the next module, as an introduction and general analysis of 
how we would have to design the screens and the application—in short, in order to be as 
efficient as possible and reuse as much as possible. Now not only between screens of the 
same platform, but also to be able to share the same development and design for all platforms, 
which is quite a challenge. But we will talk about that in the following section. I look forward to 
seeing you.




