Concurrency Control

GeneXus

Concurrency Control

-~ ~
’ e TRN1 i
User 1 \/ _/ User 2

When we talk about Concurrency Control we make reference to a set of controls
to avoid possible inconsistencies in the data when working in environments with
multiple users.

To control concurrency it is necessary to block the information.

Concurrency Control

Start

TRN1

Unlock

In addition, the concurrent execution of programs should not cause poor
performance.

Concurrency Control
Optimistic

Transactions

Business Components

Let's start by looking at concurrency control in Transactions and Business
Components. Let's talk then about “optimistic concurrency control.”

Optimistic Concurrency Control

~ ~

. TRNT TRN2 .
| A

User 1 User 2

This mechanism assumes that multiple database transactions can be
completed without affecting each other, and that therefore these
transactions can be performed without blocking the data resources
involved.

Optimistic Concurrency Control

Start Start

TRN1 v RN 2

End - End

Before performing an update, each database transaction checks that no
other database transaction has modified its data.

This is related to the globalized nature of the web where several users can
access the same page at the same time. This makes blocking unfeasible
for web user interfaces.

Optimistic Concurrency Control

Start

TRN1

Unlock

It is common for a user to start editing a record and then leave without following
the “cancel” or “log out” link.

If locking is used, other users trying to edit the same record must wait until the
first user's lock time expires.

Optimistic Concurrency Control

- -
N RNT TRN2 o

\ 'vi\
User 1 User 2

Instead of locking each record every time it is used, the system simply
looks for signs that two users actually tried to update the same record at
the same time. If such evidence is found, then a user's updates are
discarded and the user is informed of this.

Optimistic Concurrency Control

GeneXus

- -
N RNT TRN2 o
User 1 User 2

In GeneXus, when two or more users want to update the same record, the
first one will be able to update it and the others will get an error (because
they were about to save new data based on outdated information that was
updated by another user).

Then, in these cases, the confirmation operation is reversed.

Optimistic Concurrency Control

Old Function

Start = Start

TRN1 : TRN 2

End End

IMPORTANT

@
Only the 2sent é utes]
nly lljr pre '.*ll'r attribut Vllllhr v > ‘)) “
transaction structure will be verified

The optimistic concurrency control is based on the “Old Function.”

When a record is confirmed, the “old” values of each attribute are
compared to the current values in the database. If a value doesn’t match,
an error similar to the following is displayed: “The table has been
modified,” which means that another user has modified the record since
the values were obtained.

It should be mentioned that:

« Only the attributes present in the transaction structure are taken into
account. In other words, if there are parallel transactions with more
attributes, they are not verified.

» This mechanism does not apply to attributes of types such as image,
video, audio, Longvarchar, nor to those attributes inferred from the
extended table that are updated by means of rules declared in the
transaction.

« Itonly applies to attributes that are not part of the key, because the
record is instantiated with them.

10

Concurrency Control
in GeneXus Objects

when Reading Data

when Reading & Writing Data

Let's now see what concurrency control looks like in other GeneXus
objects.

For example, how GeneXus handles locks when only reading data and
when reading and writing data to control concurrency.

Concurrency Control in GeneXus Objects

Read Only

OLD DATA
e +—— DBMS
NEW DATA
For Each
Web Panel
Data Provider
n GeneXus
Gl m Read Committed
i Read C itted
» Read Committed
i = (
* Read Uncommitted ead Uncommitted

What happens when data is only read?

If it is read-only (when using For Each commands, Web Panel type objects,
Data Providers, etc.), the generated SELECTs are NOT locked.

They are always affected by exclusive locks. For example, in
reorganizations, tables are opened in an exclusive way. In this case, no
other process will be able to open the table, no matter if it is read-only.

On the other hand, if the information to be read is locked by another write
program, the values to be displayed will depend on the DBMS. It is then up
to the DBMS to decide whether to display the old or the new value.

Concurrency Control in GeneXus Objects

Read & Write

SELECT ——— — Commit L UPDATE

Rollback

For Each

IMPORTANT

Certain For Each commands are
optimized and won't lock down. They
directly update

And what happens when data is read and written?

A For Each command that includes an update to the database, performs a
SELECT with a lock when entering the For Each and then, the update is
performed.

As any lock, it releases the records when executing the Commit or
Rollback.

It should be noted that certain For Each commands are optimized and do
not lock, but update directly.

Only For Each commands that contain conditions that go to the server,
and only assignments in their body, can be optimized.

13

GeneXus

training.genexus.com
wiki.genexus.com

training.genexus.com/certifications

14

