
Compound Formulas

Attribute = Count(Attribute, condition, default Value) if condition;

Sum(Expression, condition, default Value) if condition;

Find(Expression, condition, default Value) if condition;

Compound Formulas

Attribute = expression1 if condition1;
expression2 if condition2;

expressionn if conditionn;
expressiono otherwise;

Compound formulas include several conditional aggregate formulas and
may also contain horizontal expressions.

In this case, each expression can be an aggregate formula or a horizontal
formula. If all the expressions included are horizontal formulas, then the
defined formula is not compound but horizontal.

Conditions are any valid logical expression, and may contain attributes
belonging to the extended table of the table associated with the attribute
being defined as a formula, constants, functions, logical operators (and, or,
not) and relational operators (>, >=, <, <=, =, <> and like). The first condition
that evaluates to True will cause the result of the formula to be that of the
expression to the left of that condition (the others will not continue to be
evaluated).

When none of the conditions evaluated are True, if there is an expression
with an otherwise clause, the result of the formula will be that of the
expression preceding this clause.

2

Example

Let's see an example of this type of compound formulas in our travel
agency reality.

Here we see that the FlightOccupancy attribute was defined based on
horizontal expressions that assign the corresponding value of the
Occupancy domain (Low, Medium or High), depending on the number of
seats on the flight, which are calculated with aggregate count formulas.

In particular, in our case, we could have replaced the aggregate formulas
with the FlightCapacity attribute, but it is perfectly valid to leave it as it is
defined.

In this implementation, the structure is that of a horizontal formula and
the aggregate ones were included in the triggering conditions.

3

Another example of a compound formula

In this example, we want to calculate the average number of passengers
that traveled on a given flight.

Remember that unlike the Flight transaction where we defined flights in
a generic way, in the FlightInstance transaction we model the actual
instances of a particular flight, with a date, flight number, number of
passengers, etc.

To calculate the average number of passengers that took each flight, we
must add the total number of passengers for all instances of that flight
and divide it by the number of flight instances.

We define the FlightAverageNumberOfPassengers attribute in the Flight
transaction as a global formula, calculated as the quotient of an
aggregate sum formula, which adds the
FlightInstanceNumberOfPassengers attribute and divides the result by
the number of instances of the flight, calculated as an aggregate Count
formula that uses the FlightInstanceDate attribute to count the
instances.

Note that since the formula has been defined as global in the Flight
transaction, its context is the table associated with the formula attribute,
i.e. the FLIGHT table. Therefore, the result will be the average number of
passengers of the instances of the particular flight in which you are
positioned.

Also, remember that we have the aggregate Average formula with which
we could have done this calculation, but we did it this way to prove that
it is possible to compose formulas to create compound formulas.

4

And we could continue to compose calculations, for example, if we were interested in
the average revenue per flight, we could have multiplied the average number of
passengers by the final price of the flight, the FlightFinalPrice attribute.

Note that this attribute is in turn a horizontal formula, so GeneXus can easily perform
complex calculations such as the ones described.

Attribute = Max(...) if condition1;
(2 * attrx) + 100 if condition2;
Sum(attry) otherwise

Attribute = Find(...) if condition1;
1 otherwise

Attribute = procedure(...) if condition1;
Min(…) if condition2;
10 if condition3

Attribute = 2 + Count(Attribute, condition, default Value) *

Sum(Expression, condition, default Value) if condition;

Attr1 + Attr2 * Attr3 otherwise;

Examples of other compound formulas

Compound formulas provide great flexibility for defining calculations,
and make it possible to model a large number of situations.

In this video, we saw how convenient it is to use formulas to save
code, taking advantage of the simplicity of declarative programming.

5

training.genexus.com
wiki.genexus.com

