
Database Update

Business Components vs. Procedure-specific Commands

1

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

Insert, Update, Delete

1. Business Component: Insert(), Update(), Delete(), etc.

2. Procedure: New, Assignment in For each, Delete

1. Business Component: Insert(), Update(), Delete(), etc.

2. Procedure: New, Assignment in For each, Delete

To update the database using code, there are two possibilities:

Using the business component of the transaction, through its methods, or
exclusively within a procedure, through the New, For Each commands
with direct assignment of the attributes to be modified, and the Delete
command.

2

Uniqueness
Check

Referential Integrity
Check

Rules/Events
execution

Business Component

New, Assignment in For Each,
Delete

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

&attraction.Load(3)

&attraction.CategoryId = 100

&attraction.Update()

&attraction.GetMessages()

As we saw, both options control the uniqueness of records; that is, no
records with a repeated primary or candidate key are ever allowed in the
database. In the example, it will never be possible to have two attractions
with the same identifier. And if, for example, AttractionName were a
candidate key, no two attractions with the same name would be allowed
either.
This is automatically checked by the Business Component or by the
command in the procedure before making the operation on the Database.

So far it is the same. Now let's look at the differences.

Regarding the referential integrity check, the insertion, update or deletion
through a Business Component will check before making the operation
that the referential integrity is not broken, just as the transaction does. For
example, if we want to change the category of attraction 3 to a non-
existent one, the Business Component will first check that the category
100 exists in the Category table and if it doesn't exist, it will not try to
update it. It will also load an error message indicating it in the collection of
messages returned if we ask it to do so.

3

Uniqueness
Check

Referential Integrity
Check

Rules/Events
execution

Business Component

New, Assignment in For Each,
Delete

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

For each Attraction

Where AttractionId = 3

CategoryId = 100

endfor

Exception!

On the other hand, the operations performed by procedure-specific
commands will not perform any referential integrity check whatsoever.
This means that if, for example, we want to update the category of
attraction 3, now by assignment within a For Each, the Category table will
not be queried to find out if a category 100 exists before the order is sent

check the referential integrity either, we will be left with inconsistent data.
And if it does check it, as is the default behavior, it will throw an exception
and the program being executed will cancel.

4

Uniqueness
Check

Referential Integrity
Check

Rules/Events
execution

Business Component

New, Assignment in For Each,
Delete

So, for the time being, the scale seems to be tipping towards the use of
Business Components.

5

For each Attraction

CategoryId = 100

endfor

For each Attraction

&attraction.Load(AttractionId)

&attraction.CategoryId = 100

&attraction.Update()

endfor

vs
If find(CategoryId, CategoryId=100, 0) = 100

endif

Referential Integrity Check

For each Attraction

CategoryId = 100

endfor

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

However, if the records to be updated are in the millions or billions, things
change a bit. Checking the referential integrity of each record before
performing the operation is a time-consuming task. It is negligible in the
case of a few records, but very important in the case of millions. In that
case the update with procedural commands is THE solution if
performance becomes critical.
In the example we could run the For Each only if we are sure that category
100 exists. And we could even improve performance further by using the
blocking clause of the For Each.

6

Uniqueness
Check

Referential Integrity
Check

Rules/Events
execution

Business Component

New, Assignment in For Each,
Delete

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

5 1 1 2

&attraction = new()

&attraction.CountryId = 1

&attraction.CityId = 1

&attraction.CategoryId = 2

&attraction.Insert()

And finally, what about rules and events defined in the transaction?

We know that the update through Business Components will execute
them (the corresponding ones, of course, that do not have to do with the
transaction interface).

So, if we have an error rule that doesn't allow us to enter an attraction
without a name, and we try, for example, to insert a new, auto-numbered

be allowed. And the error will be captured in the message collection.

7

Uniqueness
Check

Referential Integrity
Check

Rules/Events
execution

Business Component

New, Assignment in For Each,
Delete

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

5 1 1 2

New

CountryId = 1

CityId = 1

CategoryId = 2

endnew

On the other hand, when it comes to database update commands in
procedures, the transaction is not involved at all (or, it is only involved to
the extent that it defines the database table, but only for that). So rules or
events are not considered at all.

Therefore, in the example, even if there is an error rule, the insertion
through the New command in a procedure will not even be aware of it,
and will insert the record with an empty name without any problem.

Again, here the scale clearly tips towards using Business Components
rather than update commands in procedures, since we ensure that all the
data logic is executed.

We could repeat it in the procedure, but we know the problems of
duplication.

In addition, executing rules and events obviously takes time. If
performance is a problem, then we probably need to update the database
with procedure-specific commands.

8

Uniqueness
Check

Referential Integrity
Check

Rules/Events
execution

Scope

Business Component Any Object

New, Assignment in For
Each, Delete

Procedure only!

Commit?

Rollback?

One last advantage of Business Components over specific update
commands is that, while the former can be used in virtually any object that
supports code, for example, in Web Panel or Panel events, the latter can
only be programmed in procedures.

The same applies to Commit and Rollback for both ways. That is to say,
the developer must decide to use them where it is most convenient,
regardless of whether procedures have the Commit on Exit property set to
Yes by default.

Let's look at a special case that may cause confusion.

9

DEMO

10

Suppose that from this Web Panel we want to call this procedure that will
try to insert an attraction in the database and will return its ID, since it is
auto-numbered.
We have to decide whether to insert the record with the New command or
with the Business Component. First let's do it with the command.

Since the Commit on Exit property is set to its default value, Yes, and
clearly an operation is being performed on the database, then GeneXus
places an implicit commit at the end of the procedure source code.

For this reason, we know that when returning from procedure execution, if
it was possible to insert the record in this statement then it will have
already been committed.

11

And that is why the navigation list gives us this warning.

Let's take a look at the attractions in the database. Now we run it. Let's look
at the attractions again. As we expected, here we found the new tourist
attraction.

12

But now let's see what would have happened if instead of inserting with
the New command, we had done it with the Business Component (let's
put a 2 to the name Eiffel Tower) and not explicitly Commit, since we have
the Commit on Exit property enabled.

13

If we look at the navigation list, we can already see something odd: it is not
giving us the same warning as in the other case, regarding the Commit on
Exit property.

And then, if we run it, we see that it informs us of the next attraction
number, which makes us think that it was correctly inserted and
committed, but if we look for it in the transaction... it's not there!

What happened?

14

Commit on exit?

Commit

In previous videos we have repeatedly said that having the Commit on Exit
property of a procedure set to Yes doesn't mean that GeneXus will always
place a Commit at the end of the source code.

We said that it will only do so if it finds that in the procedure's Source,
somewhere, the database is being accessed to do some CRUD operation
(Create, Update, Delete).

Thus, in the first case it will clearly place a Commit, because the New
command unequivocally represents a CRUD operation.

However, it doesn't recognize an operation of this type for the second
case. It takes the Business Component by its structure, as an SDT, and fails
to interpret the Insert method accordingly. So it doesn't understand that in
the Source of this procedure you want to do any CRUD operation. And
that's why it doesn't add the Commit at the end of the source code.

15

Commit on exit?

Commit

So in this case, for the time being, we will have no choice but to make it
explicit.

If we try it now... it behaves as expected.

16

Uniqueness
Check

Referential Integrity
Check

Rules/Events
execution

Scope

Business Component Any Object

New, Assignment in For
Each, Delete

Procedure only!

Commit?

Rollback?

We have seen the main differences between performing CRUD operations
with Business components and doing it directly in procedures through
specific commands.

17

training.genexus.com

wiki.genexus.com

training.genexus.com/certifications

18

