Logic for querying the database with GeneXus

Cases of nested For each commands. Formalization

GeneXus'

[E GeneXus Advanced course - Ver- X | @ More About Nested For Each Co X | + v - X

&« Cc O @ training.genexus.com/en/learning/courses/genexus/v17/advanced/content/more-about-nested-for-each-command-cases-and-navigation Q @ w = 0O & :
@ GXSync Web Angular application Travel Agency Sam... @ Intranet Other bookmarks

GeneXus Advanced course

Version: GeneXus 17

More About Nested For Each Command Cases and Navigation

We analyze the navigations of nested For each commands when implementing a Join. a Cartesian Product. or

a Control Break. ¥y 0 in]

Total length of videos: 13h
L More About For Each Command -
More Nested For Each mand Cases and Navigation GeneXus

traiing

More About Nested For Each Command Cases and Navigation

For each Category Subroutines

Print >
Unique Clause
==
For each Country.City Y Data Selectors
Print > ” C ” 'y
Endfor Sttt 1 Data Providers. Language and Some Examples
Endfor (=
§ Feracooric
Aerwscabams Upgrade of Data Base
gwhvd
i
ot Single-Level Business Components. Review
v Two-Level Business Components
CourtryCoy
- ;E;’:" Single-Level and Two-Level Business Components: Comparison
oo
7 Business Components: Differences Between Methods
L]
7 &) Inserting with Procedure-Specific Commands
Foomd |
o Combrihne Updating with Procedure-Specific Commands

Ec
MORE VIDEOS

Deleting with Procedure-Specific Commands

in ' o c o

In this video... we had discussed the three types of navigations that GeneXus
implements when it finds nested For each commands.

We will come back to them to formalize them a bit more.

BaseTable,
For each
skip count ex BaseTable, JOIN
order tt,, [w]
order att,, [1 |
order none [1 BaseTable; # BaseTable,
unique at For each])
que att,,)) 1-N relationship
using Da (pa n,) skip count
order []
where [fition] order att,, []
where « i [] order none [fition]
where ctor (f f) i { : CARTESIAN PRODUCT
blocking where [1
where [1

when duplicate where att IN Da (parm,) BaseTable,; # BaseTable,

3 blocking

: F NO 1-N relationship
when none when duplicate

" when none

endfor
endfer CONTROL BREAK

BaseTable, =BaseTable,

When inside the body of a For each command there is another one, it means that
for each record in one navigation of a table, we want to run through many records
in another navigation of the same or another table. A particular case is when a
single record is retrieved.

First, the base tables are determined and then the relationship between them is
explored. This will lead to one of three cases: Join, Cartesian Product, and Control
Break.

We are aware of a first major difference: the first two cases will involve different
base tables, while the latter is a case of the same base table.

What is the difference between a Join and a Cartesian Product? The identification
of a direct or indirect 1 to N relationship. Let's formalize all cases.

¥ Attractionld

[Category 2 |
¢ Categoryld
CategoryName

Tri AttractionName
e Countryld
7 Tripld CpuntryName
T Cityld
ripDate >
R — CityName ¢
2, TripYear Country 2
Categaryld
TripDescription Cat N
Attraction Anegct:ry ;hr;? ¥ Countryld
¥ Attractionld raction o) CountryName
AttractionName 7 City
TripAttractionVisitTime e ¥ Cityld
[Hotel 2 | CityName

7 Hotelld
HotelName
Countryld
CountryName
Cityld
CityName

TripAttractionVisitTime

§ Tripld

¢ Adtractionld

TripDate
TripDescription e
5 TripYear Category 2
¥ 7§ Categoryld
b4f— CategoryName

AttractionName
Countryld
Categoryld A
AttractionPhoto [CountryCity [Country 2 |
Cityld ‘ |«

_¥ 7 Countryld ¢ Countryld |

) - ¥ Cityld CountryName

Hotel CityName

§ Hotelld
HotelName
Countryld
Cityld

Suppose we have these 5 transactions to record the tourist attractions that can be
visited on tours, where each attraction corresponds to a category (such as
Museum or Monument), and is from a city in a country. On the other hand, we

have hotels in each country and city.

From these transactions, we obtain these tables with their relationships.

For Each Country (Line: 43)

for each Country

print PB1 //CountryName Countryld
N . Index: ICOUNTRY
for each Trip.Attraction St from FirstRecord
print PB2 //AttractionName, TripAttractionVisitTime Loop while: NotEndOfTable
endfor @ZCcuntry (Countryld) INTO Countryld CountryName
endfor
For Each TripAftraction (Line: 50)

Tripld , Attractionld
ndex” ITRIPATTRACTION
Countryld = @Countryld

Server

¥ Tripld
TripDate

TripDescription
&, TripYear

=Altraction (Aftractionld) INTO Countryld AtiractionName

¥ Trpld
§ Attractionld
TripAttractionVisitTime

¥ Attractionld
AttractionName
Countryld
Categoryld
AttractionPhoto
Cityld |
- _ v‘ § Countryld ‘ § Countryld

JOIN

»

(Country 2~ ‘

) & ¥ Cityld CountryMame
Hotel 2 CityName -

BaseTable, c ext(BaseTable,)

¥ Hotelld
HotelName:
Countryld
Cityld

Let’s start with the Join. How will this code be resolved?

For each country name, you need to print the attraction names with their visit
time specified in the trip. Is there a relationship between the information?

We know that a TripAttraction record belongs to a single attraction, which
corresponds to a single city, which in turn corresponds to a single country. In other
words, from the TripAttraction table we reach Country in a unique way. Therefore,
for the second For each we can print only the tripattractions corresponding to the
country of the main For each, as we can see in the navigation list as a constraint.
This Countryld preceded by @ (at sign) corresponds to the Countryld of the record
of the external For each where we are positioned. And this Countryld attribute is
that of Attraction, which is reached through TripAttraction. Clearly this is a Join,
with a 1 to N indirect relationship.

This is because for a tripattraction following the foreign keys we find a single
Countryld; therefore, for a Countryld we can find N tripattractions that will find it
by following this path.

If we formalize this case of 1 to N indirect relationship, we are saying that the base
table of the main For each is contained in the extended table of the nested For
each.

That case includes the simplest of all. For example, consider that if the base table
of the second For each were CountryCity, this formula would be satisfied.

for each Country
print PB1 //CountryName

For Each Country (Line: 43)

Orde Countryld
for each Trip.Attraction avigation fiters e N
print PB2 //AttractionName, TripAttractionVisitTime Loop while: NotEndOfTable
endfor @ZCcuntry (Countryld) INTO Countryld CountryName
endfor

For Each TripAftraction (Line: 50)

Tripld , Attractionld
TRIPATTRACTION

Countryld = @Countryld

=Altraction (Aftractionld) INTO Countryld AtiractionName

JOIN
A

BaseTable, c ext(BaseTable,)

Here we see more clearly the relationships between the tables involved in this
case.

for each Country
print PB1 //CountryName
for each Trip.Attraction
print PB2 //AttractionName, TripAttractionVisitTime
endfor
endfor

BaseTable, »

" JOIN

BaseTable,

OSSOSO vereeeerorrrreeereed: BaseTable, c ext(BaseTable,)

That is, the base table of the main one is this one, and the base table of the nested
one is this other one.

The indirect 1 to N relationship is clear. It is indirect through the extended table of
the nested For each.

for each Trip.Attraction
print PB1 //AttractionName, TripAttractionVisitTime
for each Hotel
print PB2 //HotelName
endfor
endfor

¥ Tripld
TripDate
TripDescription

2, TripYear Category 3

- § Categoryld

Tripid . -
7 Trip L 3 4 | CategoryName |

§ Attractionld
TripAttractionVisitTime

¥ Attractionld
AttractionName
Countryld
Categoryld
AttractionPhoto
Cityld

JOIN

~a
| CountryCity | 2) [Country Y ‘
' v‘ ¢ Countryld ‘ ‘ § Countryld ‘

) & ¢ Cityld CountryName
Hotel 2~

CityName —
—_— BaseTa able,)
7 Hotelld

HotelName:
Countryld
Cityld

Now let's look at the other type of indirect 1 to N relationship, this time through
the main one, instead of through the extended table of the nested one.

For each tripattraction, we print the attraction name and visit time on that trip,
and then the hotel names.

for each Trip.Attraction
print PB1 //AttractionName, TripAttractionVisitTime
for each Hotel
print PB2 //HotelName
endfor
endfor

“
BaseTable, e

* JOIN

BaseTa able,)

BaseTable,

Here it is clearly not true that the base table of the main For each is included in the
extended table of the nested For each. There is no indirect 1 to N relationship
through this way. However...

for each Trip.Attraction
print PB1 //AttractionName, TripAttractionVisitTime
for each Hotel
print PB2 //HotelName
endfor
endfor

“
BaseTable, -

* JOIN

BaseTable,

...we know that for each record of the main For each we reach a record of this
table, which is also reached directly from the base table of the nested one.

10

for each Trip.Attraction
print PB1 //AttractionName, TripAttractionVisitTime
for each Hotel
print PB2 //HotelName

endfor
endfor
v
L3

v

BaseTable, “ vy
* JOIN
-
“ Ld
Att*
v
vt ext(BaseTable;) N BaseTable, # ¢
BaseTable, Att

That is to say, in this one there will be a foreign key to this other one. They will
share this attribute (because of it, this 1 to N relationship is established between
the tables).

In short, the extended table of the main For each will have some attribute in
common with the base table of the nested one, and they will establish the Join.

11

for each Trip.Attraction
print PB1 //AttractionName, TripAttractionVisitTime
for each Hotel §
print PB2 //HotelName i Loop w
endfor
endfor

Tripld , Attractionid

Index: ITRIPATTRACTION

on filters: Sta FirstRecord
NotEndOfTable

@:THDAnracth (Tripid, Attractionid) INTO Attractionld TripAttractionVisitTime
=Attraction (Attractionld) INTO Cityld Countryld AttractionName

For Each Hatel (Line: 5

=]

Orde Countryld , Cityld
ndex IHOTEL1
¥ Tripld avigation filters: Start from: Countryld = @Countryld
TripDate Cityld = @Cityld
TnsDescnpUGn Loop while Countryld = @Countryld
S (\ Cityld = @Cityld
i l 2 &, TripYear Categary
: e EEE-Hotel (Hotelld) INTO HotelName
9 Tripld > — 7 7 e
§ Attractionld P F EILYILETS |

TripAttractionVisitTime

¥ Attractionld
AttractionName
Countryld
Categoryld
AttractionPhoto
Cityld

JOIN

v‘ § Countryld ‘ ‘ § Countryld ‘

»

[Country a ‘

&
Hotel

¥ Cityld CountryMame
CityName

_ ext(BaseTable;) N BaseTable, # ¢
9 Hotelld
HotelNa
Countryld
Cityld

~
2

Here they will be Countryld, Cityld, foreign key to CountryCity.

We can see it clearly in the navigation list. Only the hotels corresponding to the
same city of the trip attraction will be printed.

12

for each Trip.Attraction
print PB1 //AttractionName, TripAttractionVisitTime
for each Hotel
print PB2 //HotelName
endfor
endfor

“
BaseTable, -

* JOIN

ext(BaseTable;) N BaseTable, # ¢
BaseTable,

Again, to see it more clearly, let's keep only the tables involved: here we see the
indirect 1 to N relationship.

13

BaseTable, c ext(BaseTable,) BaseTable LN
2

BaseTable,

BaseTable,

ext(BaseTable;) N BaseTable, # ¢

BaseTable,

If in the first case this base table was run through and for the nested one this other
one, and therefore the relationship was indirect 1 to N through the extended table
of the nested one, in the second case it is through the extended table of the base

table of the main one. And it is here that the 1 to N relationship is established with

the base table of the nested one.

14

BaseTable, C ext(BaseTable,)

BaseTable;

BaseTable,

JOIN 1-N relationship

ext(BaseTable,) N BaseTable, # ¢

BaseTable, # BaseTable,

BaseTable,

BaseTable,

Therefore, the Join case is that of different base tables where a direct or indirect 1
to N relationship is found, according to these options: base table with extended
table, or extended table with base table.

There is no extended table with extended table.

15

JOIN 1-N relationship BaseTable, C ext(BaseTable,) ext(BaseTable,) N BaseTable, # ¢

BaseTable; # BaseTable,

BaseTable,

CARTESIAN

NO 1-N relationshi
PRODUCT (o] relationship

BaseTable, >

That is to say, if the base table of the nested one is not this one but this other one,
there is a relationship between the extended tables, obviously, because both
arrive at the same table. However, here there will not be a Join but a Cartesian
product.

Why, if for each record of the base table of the main For each we may keep only
those of the base table of the nested one that correspond to the same record of
this table to which both arrive in a unique way?

The more indirect the relationship, the less likely it seems that the developer is

looking to take it into account, because the relationship seems more and more
distant, and if the developer is looking for it, they can always make it explicit.

16

JOIN 1-N relationship BaseTable, C ext(BaseTable,) ext(BaseTable,) N BaseTable, # ¢

BaseTable; # BaseTable,

BaseTable,
N
Att
for each L
-
care — *
for each o
where Att = &var o '1
e N
endfor BaseTable, | *—* o
endfor

For example, by assigning to a variable the value of the attribute that is obtained
by following the path of the extended table of the main For each... that is to say,
the value of this attribute that matches this one.

And in the nested For each, explicitly filtering the records from which you get to
this other attribute that is called the same because it is also a foreign key to the
common table.

Let's take this opportunity to make a clarification: when we speak of a Join or
Cartesian Product, of this difference, we are referring to the implicit
determinations of GeneXus, not to whether it ends up filtering the information of
the nested one. Note that in this case it is a Cartesian Product in the sense that if
we had not written a Where, GeneXus would not add it implicitly either and all the
records of the nested one would be returned. Actually, in this case not all the
records in the nested one will be returned because we explicitly wrote a Where, so
it will actually do a Join, but not the implicit Join of GeneXus.

17

ext(BaseTable;) N BaseTable, # ¢

JOIN 1-N relationship BaseTable, ext(BaseTable,)
BaseTable; # BaseTable,
"
-
BaseTable, “
L2
L)
CARTESIAN ’)
NO 1-N rel h
PRODUCT (o] relationship
v
‘o
N
BaseTable, [« > >

The more distant the relationship, the less likely it will be that the developer has it
in mind, or is trying to enforce it implicitly.

18

BaseTable, <
CARTESIAN
PRODUCT
.
-
v “« > v
v
g
N
BaseTable, [« —*» “«—» w—r
for each
for each
endfor
endfor

The following is an interesting aspect of this case. We add one more table to make
it even clearer.

If we do the intersection of both extended tables, we are left with the tables in
common. Now, if in the main For each we place attributes from these two tables,
clearly the values that will be taken will be those obtained from each record of the
base table that meets the filters. That is to say, they will be the ones coming from
this extended table.

But what happens if these attributes are in the nested For each? Are the ones
from the extended table of this For each taken?

If by one way or the other we arrived at the same record in this table, it wouldn't
matter at all, because they would give the same value by either way. That's what
would happen if the Join was done. But there is no Join in this case. Therefore, the
values of these attributes obtained in this way will not always be the same as
those obtained in this other way.

So which path will be chosen if in the nested For each attributes are placed from
here or here? It will be that of the main For each. In fact, if we don't place a base
transaction for the nested For each and we let GeneXus calculate it, it will first
remove all the attributes of the nested For each that belong to the extended table
of the main one. And with those that are left, with those alone it will determine
the base table. That is to say, it will remove them, because it assumes that they
are reached through the main For each.

19

§ Tripld

CARTESIAN - TripDate
PROD) e TripDescription -
opuct TripAliraction o~ ‘ 2, TripYesr Category
7 Tripid — - ?grwwﬁ
¥ Adtractionld i egorytame |
TripAttractionVisitTime
e ¢ Attractionid
AttractionName
Countryld)
Categoryld A
AttractionPhota [CountryCity = | [Country 2 |
Cityld | ’ |
AttractionDescripti ,‘ 9 Countryld ‘ 9 Countryld ‘
S—— ¥ Cityld CountryName
ConferenceRoom z Hatel 2 Cyhame

¥ ConferenceRoomld ¢ Hotelld
ConferenceRoomName HotelName
Hotelld Countryld
ConferenceRoomCapacity Cityld

for each Trip.Attraction
print PB1 //AttractionName, TripAttractionVisitTime
for each ConferenceRoom
print PB2 //ConferenceRoomName, HotelName, CountryName, CityName
endfor
endfor

For example, if we add a ConferenceRoom table with an N to 1 relationship with

Hotel, and specify these nested For each commands, where these are clearly the
base tables, we see that in the first For each nothing is requested from the tables
in common. In addition, from the base table it would only be necessary to access
Attraction to obtain AttractionName.

But if we look at the nested For each, besides an attribute of Hotel, CountryName
of Country and CityName of CountryCity are displayed. We might think that it is
then going to use the associated ones through ConferenceRoom.

However, if we look at the navigation list....

20

For Each TripAttraction (Line: 72)

7 Tripld

Order: Tripld Attractlo TripDate
RIPAT - - TripDescription
| TripAttraction a | L. TripYear
m o 7 Tripid ¥ § Categoryld
=TripAttraction (Jripld, Aftractionld) INTO Attractionld TripAttractionVisitTime ﬁ,.4*—\ CategoryName
? Adttractionld |
=Attraction (Afiraction/d) INTO Countryld Cityld AttractionName T e T -
—Ccuntryw Counfr/fd INTT lCcuntryName L npA (AL IS J

¢ Attractionld

AttractionName
For Each ConferenceRoom (Line: 77) Cnuntryld
Categoryld
Orde ConferenceRoomid A_ttractlonPhuto | Cu.rlry(:ﬂy |“ Country &
x: ICONFERENCEROOM Cityld
Server AdtractionDescripti ¥ Countryld ‘ ¥ Countryld ‘
ﬁ=ConferEnCSRoom (ConferenceRoomld) INTO Hotelld ConferenceRoomName ? glty::: CDuntryName
FH-Hotel (Hotelld) INTO HotelName Cosleio i = [Hotel ityName

7 ConferenceRoom|d ¥ Hotelld

ConferenceRoomName HotelName
Hotelld Countryld

i Cityld
ConferenceRoomCapacity L)

for each Trip.Attraction
print PB1 //AttractionName, TripAttractionVisitTime
for each ConferenceRoom

print PB2 //ConferenceRoomName, HotelName, CountryName, CityName
endfor
endfor

...we see that it doesn't. In the nested For each it only accesses ConferenceRoom
to obtain the ConferenceRoomName and the Hotelld, through which it accesses
this record in Hotel to retrieve HotelName. And there it stays. (Note that there is
no Join.)

So where does it retrieve the values of CityName and CountryName from?
From the main For each. Let's see that it accesses Attraction to retrieve
AttractionName, but also Countryld and Cityld to be able to access these two

tables and retrieve CountryName and CityName, respectively.

And what would we do if we wanted the values of the country and city of the
Hotel of the ConferenceRoom?

An initial idea could be through a subtype.

21

(Trip

»)

Subtype Description Supertype
E'A‘Hnte\Cnuntryth

? HotelCountryld Hotel Country Id Countryld %_
§ Hotelcityd Hotel City Id CityId
i~ ® HotelCountryName Hotel Country Name CountryName

¥ Tripld

(Category |2 |
¥ ¢ Categoryld
o= CategoryName

H . . . Attractionld
HotelCityName Hotel City Mame CityName ? TrpAtirsctionVisitTime
—_— ¢ Attractionld
AttractionName
Countryld .
Name Categoryld . P
AttractionPhoto CountryCity |2 Country 2
= Cityld | % __ﬂ
? Hoteld AttractionDescripti ,‘ ¢ Countryld ‘ ¢ Countryld |
= ¥ Cityld CountryName
P HotelMame e Hotel A CityName
SA HotelCountryld = I«_
ConferenceRoomld § Hotelld
S¢ HotelCountryName ' ConferenceRoomMName HotelName
S HotelCityId Hotelld HotelCountryld
-V HotelCityName ConferenceRoomCapacity HotelCityld

for each Trip.Attraction
print PB1 //AttractionName, TripAttractionVisitTime
for each ConferenceRoom

print PB2 //ConferenceRoomName, HotelName, CountryName, €ityName HotelCountryName, HotelCityName
endfor

endfor

For example, if we define this group of subtypes and use it in Hotel instead of the
supertypes... We see that now the table has the subtypes, and it will be enough to
replace the supertypes with the corresponding subtypes in the nested For Each.

22

(Trip

»)

For Each TripAttraction (Line: 72)

Order Tripld , Attractionld
Index: ITRIPATTRACTION

(Category |2 |

Navigation filters: Start from FirstRecord
Loop while NotEndOfTable
Join location Server ¢ Tripld — « ? :ieggw:‘?ame
? Attractionld Aftraction 2 . egory
%:mw\ Tripld, Attractionld) INTO Attractionld TripAttractionVisitTime TripAttractionVisitTime
-Attraction (Attractionld) INTO AftractionName 7 Attractionld
AttractionName
Countryld .
For Each ConferenceRoom (Line: 77) Categoryld
AttractionPhota | CountryCity |2 P‘ (Country 2 |
ConferenceRoomld Cityld e
ndex: ICONFERENCERCOM AttractionDescripti y § Countryld ¥ Countryld
Serve = | ¥ Ciyd CountryName
N, W CityName —_—
%:Comfere nceRoom (ConferenceRoomlid) INTQ Hotelld ConferenceRoomName ConferenceRoom 2 |«— 2 —
=Hotel (Hotelld) INTO HotelCountryld HotelCityld HotelName ? ConferenceRoomld ? Hatelld
%ZCEU ntry (HotelCountryld) INTO HotelCountryName ConferenceRoomName HotelName
=CountryCity (HotelCountryld, HotelCityid) INTO HotelCityName Hotelld HotelCountryld
ConferenceRoomCapacity HotelCityld

for each Trip.Attraction
print PB1 //AttractionName, TripAttractionVisitTime
for each ConferenceRoom

print PB2 //ConferenceRoomName, HotelName, CountryName, €ityName HotelCountryName, HotelCityName
endfor

endfor

Here is the navigation list with the information we were looking for.
However, it doesn't seem a good idea to place a subtype just because we want to

remove the ambiguity in a case of nested For Each commands. Note that here
there is no ambiguity in the model.

23

«

e

| TripAttraction a |
¥ Tripld
¥ Attractionld
TripAttractionVisitTime
ConferenceRoom 2

§ ConferenceRoomid
ConferenceRoomName
Hotelld
ConferenceRoomCapacity

7 Tripld

TripDate
TripDescription -
L. TripYear Category
§ Categoryld
= CategoryName

¢ Attractionld
AttractionName

Countryld
Categoryld A
AttractionPhoto [CountryCity 2 | [Country x|
Cityld
AttractionDescripti w7 Countryld § Countryld
—l § Cityld CountryName
Hotel) | CityName |

¥ Hotelld
HotelName
Countryld
Cityld

It would be different if this table existed to introduce two paths to get to these

other ones.

24

For Each TripAttraction (Line: 72)

Order: Tripld | Attractionld
Index: ITRIPATTRACTION

Navigation filters: Start from. FirstRecord
Loop while NotEndOfTable
Join location Server

@:Tnnmtractlom (Tripid, Attractionld) INTO Attractionld TripAttractionVisitTime
=Atftraction (Aftractionid) INTO AftractionName

For Each ConferenceRoom (Line: 81)

ConferenceRoomld
Index: ICONFERENGERQOM
Start from

FirstRecord
NotEndOfTable

@:CmferenceRocm (ConferenceRoomlid) INTO Hotelld ConferenceRoomName
=Hotel (Hotelld) INTO Countryld Cityld HotelName

=Country (Countryld) INTO CountryName
@ZCcumryC\ty (Countiyild Cityld } INTO CityName

for each Trip.Attraction
print PB1 //AttractionName, TripAttractionVisitTime
Do 'PrintRooms’

endfor

Sub 'PrintRooms’
for each ConferenceRoom

TripDate
"] TripDescription
(T i 2 | | 4, Trip¥Year
§ Triold L

¥ Attractionld
TripAttractionVisit Time

ConferenceRoom 2 ’«_

¥ ConferenceRoomld
ConferenceRoomName
Hotelld
ConferenceRoomCapacity

print PB2 //ConferenceRoomName, HotelName, CountryName, CityName

endfor
endsub

¥ Tripld

¥ Attractionld
AttractionName
Countryld
Categoryld
AttractionPhoto
Cityld
AttractionDescripti

[Hatel

§ Hotelld
HotelName
Countryld
Cityld

¥ Categoryld

CategoryName

EE—- -

The smartest way to solve this problem, then, is to leave the model unchanged
and write the second For each in a subroutine. Now the navigation list shows

exactly what we want.

Here we are accessing CountryName and CityName. From ConferenceRoom, and

not from TripAttraction.

25

CountryCity 2 [Country z |

¥ Countryld ¢ Countryld

¥ Cityld CountryName
CityName

JOIN 1-N relationship BaseTable, C ext(BaseTable,) ext(BaseTable,) N BaseTable, # ¢

BaseTable; # BaseTable,
"
-
BaseTable, “
L2
L)
CARTESIAN ’)
NO 1-N rel h
PRODUCT (o] relationship
v
‘o
N
BaseTable, [« > >

Before moving on, let's focus again on the second Join case....

26

BaseTable,

ext(BaseTable;) N BaseTable, # ¢

*

BaseTable,

BaseTable,

... that we had seen, to examine for a moment what happens if the relationship
exists through subtypes. Actually, let's look at the simplest example of all.

What will happen if this relation is not created using supertypes, but subtypes?

27

(Trip

Subtype Description
E-A HotelCountryCity
? HotelCountryld Hotel Country Id

§ Hotelcityd
i~ ® HotelCountryName
- ® HotelCityName

Hotel City Id
Hotel Country Name
Hotel City Mame

9 Hotelrd

P HotelName

Sa HotelCountryld
Sy HotelCountrylame
: Sa HotelCityId

S.e HotelCityName

for each Attraction
print PB1 //AttractionName
for each Hotel
print PB2 //HotelName
endfor
endfor

Supertype

Countryld
CityId
CountryName
CityName

¥ Tripld
¥ Attractionld
TripAttractionVisitTime

[ConferenceRoom

I«_ ‘W‘

¥ ConferenceRoomld
ConferenceRoomName
Hotelld
ConferenceRoomCapacity

»)

(Category |2 |

§ Hotelld
HotelName
HaotelCountryld
HotelCityld

In the example we saw, if instead of Countryld and Cityld, in Hotel we place these

subtypes...

If our nested For each commands are written like this: that is, first the Attraction
table is run through and for each one the Hotel table is run through, then GeneXus

finds the relationship...

28

- ¥ ¢ Categoryld
7"‘*““ o] CategoryName

¥ Attractionld
AttractionName
Countryld -
Categoryld A
AttractionPhota (CountryCity 2 | (Country (2 |
Cityld |
AttractionDescripti ,‘ ¢ Countryld ¢ Countryld |

— ¥ Cityld CountryName

CityName —

(Trip

»)

For Each Attraction (Line: 72)

Attractionld
Index: IATTRACTION
Navigation filters: Start from FirstRecord

(Category |2 |

Categoryld
1 ¥ Tripld . " ?
Loop while NotEndOfTable ¢ Attractionld * Attractin 2 | CategoryName |
TripAttractionVisitTime
@:Atlracticn (Aftractionld) INTO Cityld Countryld AttractionName ? iﬁ::ﬁﬂﬁﬂ:fame
Countryld .
) . I Categoryld A
For Each Hotel (Line: 77) AttractionPhota |CﬂllryClly 2 | [Country z |
Cityld
Order: HotelCountryld , HotelCityld w g 8,‘;:?;”"" 7 gjﬂiz‘ﬂame |
ndex: IHOTEL1 e P — CityName E—
filters: Start from HotelCountryld = @Countryld ConferenceRoom 2 I«_ Hote) 2 —
HotelCityld = @Cityld 7 Hotelld
Loop while HotelCountryld = @Countryld ? ggzz:ﬁzgﬁm:ﬁme HotelName
HotelCityld = @Cityld Hotelld HotelCountryld
ConferenceRoomCapacity | HotelCityld
ﬁ:Hote\ (Hotelld) INTO HotelCountryld HotelCityld HotelName

for each Attraction
print PB1 //AttractionName
for each Hotel

print PB2 //HotelName
endfor
endfor

... and performs the Join. We see that in the first For each it retrieves the values of
Countryld and Cityld, and then in the nested For each it filters the Hotel records
for which the subtypes match these.

However...

29

(Trip

»)

For Earh Attractinn (1 ine- 721

For Each Hotel (Line: 79)

(Category |2 |
Nay Order Hotelld Triold W ¢ Categoryld
Ao IHOTE i L
Index: IHOTEL ;Aﬂ?ﬂcllﬂnld > Attraction 2 i CategoryName
Navigation filters: Start from FirstRecord TripAttractionVisitTime
Loop while NotEndOfTable me § Attractionld
= AttractionName
@_ . [EEEE Countryld
—Hotel (Hotelld) INTO HotelName Categoryld
Fe AttractionPhoto (CountryCity 2 | [Country z |
o . — Cityld | P‘ ’
For Each Attraction (Line: 86) AttractionDescripti | | § Countryld Countryld
—— ¥ Cityld CountryName
. — i CityName
Order: Aftractionld ConferenceRoom 2 I«_
ndex: IATTRACTION
¢ ConferenceRoomid § Hotelld
HotelName

. . . ConferenceRoomName
ﬁ:Attracuon (Attractionld) INTO AttractionName Hotelld
ConferenceRoomCapacity

HaotelCountryld
HotelCityld

ﬁ:Hote\ (Hotelld) INTO HotelCountryld HotelCityld HotelName

for each Hotel
PB2 //HotelName
for each Attraction
print print PB1 //AttractionName
endfor
endfor

... if the For each commands are written in reverse order—that is, in the external
one the hotels are run through and in the nested one the attractions are run
through—a join will not be made, but a Cartesian product.

The rule is: a Join is made between supertype and subtype, but not the other way
around. That is to say, since in hotel we don't have Countryld and Cityld but
subtypes of these—particular cases—it is not clear for GeneXus that the developer
wants to go from the particular to the general and then only list the attractions
with the same values for the supertypes.

30

for each
//SUPERTYPE
for each
//SUBTYPE
endfor
endfor

JOIN

BaseTable,

for each 9w“°é
//SUBTYPE
for each
//SUPERTYPE
endfor
endfor

CARTESIAN BaseTable,

PRODUCT

Here it is summarized.

31

JOIN

for each TripAttraction
print PB1 //AttractionName, TripAttractionVisitTime
for each Hotel
print PB2 //HotelName, CategoryName
endfor
endfor

§ Tripld
TripDate
TripDescription

L TripYear

§ Tripld
¢ Attractionld
TripAttractionVisitTime
- ¥ Attractionld
AttractionName
Countryld
Categoryld

~a ,

(Category (2 |
~ W 7 Categoryld
"f%” \ CategoryName

AttractionPhato ‘Cu.llhyClly 2)« [Country z |
Cityld ‘
BaseTable, # BaseTable, AtractionDescripti | | § Countryld ¢ Countryld
— ¥ Cityld CountryName
WA— CityName —

ConferenceRoom

 Hotelld

§ ConferenceRoomld
HotelName

ConferenceRoomName
Hotelld
ConferenceRoomCapacity

Countryld
Cityld

for each TripAttraction
print PB1 //AttractionName, TripAttractionVisitTime

CARTESIAN for each ConferenceRoom
PRODUCT print PB2 //ConferenceRoomName, HotelName, CategoryName
endfor
endfor

Finally, (going back to the case without subtypes) before moving on to the case of
the same base table, let's add that both in the case of a Join and of a Cartesian
Product, it is possible to use in the nested For each attributes of the extended
table of the main one that are not in the extended table of the nested one. In the
two cases shown in the nested For each, a request is made to print CategoryName
which is not in the extended table of its For each. But it is in the extended one of
the parent For each.

Therefore, for each tripattraction the values of these two attributes are printed,
and the value of CategoryName is obtained, which will be used in the nested For
each as the given value. In the case of the Join, the values of Countryld and Cityld
are also obtained precisely to make the Join.

Then, in the first case, all the Hotels of the same country and city are run through
(there the retrieved values of Countryld and Cityld are used), and for each one the
name of the hotel and the name of the category obtained in the first For each are
printed.

In the second case, all the conferencerooms are run through (without filters
because there is no Join) and their name, the name of their hotel and the value of
CategoryName from the parent For each attraction are printed.

Remember that to determine the base table of the nested For each (as well as to

solve the navigation) the attributes that are in the nested one and are already part
of the extended one of the main one are removed first. It is for this reason.

32

for each Trip.Attraction order CategoryName
print PB1 //CategoryName
for each Trip.Attraction
print PB2 //AttractionName, TripAttracionVisitTime, CityName
endfor
endfor

CONTROL
BREAK “ v
BaseTable,

BaseTable; = BaseTable, L

Now, let's examine the control break. We know that it takes place when the base
table of every For each command is the same and it only makes sense when we
want to process grouped information. It can be grouped by any attribute or set of
attributes of the extended table.

For example, we group according to the value of an attribute of this table, which
should appear in the order clause, and we process all the associated records of this

table (and the extended table) that have the same value for that attribute.

So, for example...

33

for each Trip.Attraction order CategoryName
print PB1 //CategoryName
for each Trip.Attraction
print PB2 //AttractionName, TripAttracionVisitTime, CityName

endfor
endfor
§ Tripld
TripDate
TripDescription -
Cc::zigl T o] ;__TngYear P Category
= . Categoryld
7 Tripid N 77
¥ Attractionld i CategoryName)
TripAttractionVisitTime

¥ Attractionld

BaseTable, = BaseTable, AttractionName

Countryld
Categoryld A
AttractionPhoto (CountryCity 2 | [Country 2 |
Cityld | ‘
" _w| § Countryld ‘ ¢ Countryld ‘
) e ¥ Cityld CountryMame
Hotel A CityName —_—

¥ Hotelld
HotelName
Countryld
Cityld

We group the tripattractions by category, list for each group the category name,
and scroll through the tripattractions of that category, printing the attraction
name, visit time and city name of the attraction, for each of the tripattractions
with the same category.

34

JOIN OR CONTROL
BREAK
BaseTable, # BaseTable, BaseTable, = BaseTable,

So far we didn't worry about the determination of the base table of every For each
command because we took it for granted when using the base transaction. But
when we leave this task to GeneXus, what was a Join can become a Control Break.

We will see this by returning to the last Join case that we had analyzed.

35

For Each TripAttraction (Line: 43)

Attractionld
TRIPATTRACTI

for each Trip.Attraction -
print PB1 //AttractionName, TripAttractionVisitTime e %mg
Navigation filters

for each Hotel Country.City
print PB2 //CityName
endfor

endfor

For Each Hotel (Line: 50)

Countryld , Cityld
ndex: IHOTEL1
n filters: Start from:

Loop while:

¥ Tripld
TripDate
TripDescription
2, TripYear

F3-Hotel (Hotelid)

§ Categoryld
CategoryName

¥ Trpld
§ Attractionld
TripAttractionVisitTime

¥ Attractionld
AttractionName
Countryld
Categoryld
AttractionPhoto
Cityld

JOIN

~a
| CountryCity ~ I«) [Country Y ‘
§ Countryld ‘ § Countryld ‘

) & | ¢ Cityld CountryName
Hotel 2 CityName:

ext(BaseTable;) N BaseTable, # ¢

¥ Hotelld
HotelName:
Countryld
Cityld

There is a slight difference: in the nested For each we are printing, instead of the
names of the hotels with the same city of the trip attraction, the names of the city

of each one of those hotels.

Note that if we had specified Country.City as the base transaction instead of Hotel,
then this would be the base table of the nested one, and it would be a particular
case where the second For each would only return one record.

36

For Each TripAttraction (Lin

for each Trip.Attraction
print PB1 //AttractionName, TripAttractionVisitTime
print PB2 //CityName

Tripld , Attractionld

endfor
=CountryGity (Countryld, Cityld) INTO CityName
For First CountryCity (Line: 50)
Order Countryld , Cityld
ndex: ICOUNTRYCITY
¥ Tripld Countryld = @Countryld
d
- TripDate
.) e TripDescription - 5
a 4. TripYear Category =
J =CountryCity (Countryld, Cityld)

§ Categoryld
CategoryName

¥ Trpld
§ Attractionld
TripAttractionVisitTime

¥ Attractionld
AttractionName
Countryld
Categoryld
AttractionPhoto
Cityld

- JOIN

“—
| CountryCity ~) [Country Y ‘
v‘ § Countryld ‘ ‘ § Countryld ‘

CountryMame

Hotel 2
ext(BaseTable;) N BaseTable, # ¢

¥ Hotelld
HotelName:
Countryld
Cityld

We see it clearly in the navigation list that indicates For First instead of For Each.
Because, of course, Countryld, Cityld are the primary key of the table.

It's as if the For each had not been specified and the printblock had been printed
directly, because CityName is in the extended table of TripAttraction.

37

for each Trip.Attraction

print PB1 //AttractionName, TripAttractionVisitTime

for each))
print PB2 //CityName
endfor
endfor
¥ Tripld
- TripDate
§ ey TripDescription - ~
i i ~ : TripYear Category
- Categoryld
Tripld - § Category
¥ Tnp g T — ol CategoryName

§ Attractionld
TripAttractionVisitTime

¥ Attractionld
AttractionName
Countryld
Categoryld

For Each TripAttraction (Lin

F-=CountryCity ¢ Counfryld, Cityld) INTO CityName

Break TripAttraction (Line: 50)

lex: ITRIPATTRACTION

i > Countryld Cityld
@:Cclmtw@y‘ Countryld, Cityld) INTO CityName

BREAK

AttractionPhoto
Cityld

(Country 2~ ‘

— _w { Countryld
) & ¥ Cityld
Hotel 2~

¥ Hotelld
HotelName:
Countryld
Cityld

¢ Countryld
CountryMame

BaseTable, = BaseTable,

That's why if we don't set this base transaction and we let GeneXus determine the
base table by itself, it will choose TripAttraction; that is, it will understand that we
want to implement a control break, because assuming that the developer doesn't
write unnecessary For each commands, nothing else will make sense.

The navigation list will look like this.

However, this will not make any sense either, because it will be a control break by
the primary key; that is, it will work in the nested For each with the same record of

the main For each every time.

Tripld = @Tripld and Attractionld = @Attractionld

38

for each Trip.Attraction order CategoryName
print PB1 //CategoryName

for each
print PB2 //CityName
endfor
endfor
¥ Tripld
TripDate
) e -) TripDescription - 5
i i ~ : TripYear Category

¥ Categoryld
CategoryName

¥ Trpld
§ Attractionld
TripAttractionVisitTime

¥ Attractionld

For Each TripAttraction (Line: 4. L

CategoryName

Start from: FirstRecord
Na Loop while: NotEndOfTable
Server

@:MpAttract\on (Tripld, Aftractionid) INTO Attractionld

isitTime

E ‘ Break TripAttraction (Line: 50)

Orde CategoryName

CategoryName = @CategoryName d

@:Epmtrammn (Iripld, Attractionid) INTO Attractionld
=Attraction (Countryld Cityld Categoryld
=CountryCity (Countryld,) INTO CityName
~Category (Categoryld CategoryName

BREAK

AttractionName

Countryld ™~

Categoryld Y
AttractionPhoto (CountryCity
Cityld |

[Country

5 ‘

[Hotel 2~

¥ Hotelld
HotelName:
Countryld
Cityld

¢ Countryld

CountryMame ‘

BaseTable, = BaseTable,

It would still be necessary to specify an order clause to break by some attribute or
set of attributes whose values can be repeated. For example, CategoryName. And
so we have the same example of control break that we saw before.

39

BaseTable, # BaseTable, BaseTable, = BaseTable,

. . BaseTable; C ext(BaseTable,
1-N relationship ! { 2
ext(BaseTable;) N BaseTable, # ¢

CONTROL
yes no BREAK

JOIN CARTESIAN
PRODUCT

In summary, if the base tables are different, GeneXus will look fora 1to N
relationship of one of these two types. If it finds it, it will implement an implicit
Join. Otherwise, it will not implement any Join. We call this case a Cartesian
product. However, note that calling it a Cartesian product doesn't mean that it is
actually one. If the developer explicitly adds a filter, it will clearly bring the filtered
records, so there will be a sort of Join, but it will not be the automatic Join. We say
the case is a Cartesian product only from the point of view of the automatic filters
that GeneXus determines: that is, in this case, none.

The control break is clear.

This is the end of the formal analysis of the three types of possible navigations
when there are nested For each commands.

40

GeneXus

training.genexus.com
wiki.genexus.com

training.genexus.com/certifications

41

