
………..……………………………………………………

Logic for querying the database with GeneXus

Cases of nested For each commands. Formalization

1

………..……………………………………………………

In this video... we had discussed the three types of navigations that GeneXus
implements when it finds nested For each commands.

We will come back to them to formalize them a bit more.

2

………..……………………………………………………

JOIN

CARTESIAN PRODUCT

CONTROL BREAK

BaseTable2

BaseTable1

BaseTable1 ≠ BaseTable2

BaseTable1 = BaseTable2

BaseTable1 ≠ BaseTable2

1-N relationship

NO 1-N relationship

When inside the body of a For each command there is another one, it means that
for each record in one navigation of a table, we want to run through many records
in another navigation of the same or another table. A particular case is when a
single record is retrieved.

First, the base tables are determined and then the relationship between them is
explored. This will lead to one of three cases: Join, Cartesian Product, and Control
Break.

We are aware of a first major difference: the first two cases will involve different
base tables, while the latter is a case of the same base table.

What is the difference between a Join and a Cartesian Product? The identification
of a direct or indirect 1 to N relationship. Let's formalize all cases.

3

………..……………………………………………………

Suppose we have these 5 transactions to record the tourist attractions that can be
visited on tours, where each attraction corresponds to a category (such as
Museum or Monument), and is from a city in a country. On the other hand, we
have hotels in each country and city.

From these transactions, we obtain these tables with their relationships.

4

………..……………………………………………………

for each Country
print PB1 //CountryName
for each Trip.Attraction

print PB2 //AttractionName, TripAttractionVisitTime
endfor

endfor

1

JOIN

BaseTable1 ⊂ ext(BaseTable2)

Let’s start with the Join. How will this code be resolved?

For each country name, you need to print the attraction names with their visit
time specified in the trip. Is there a relationship between the information?

We know that a TripAttraction record belongs to a single attraction, which
corresponds to a single city, which in turn corresponds to a single country. In other
words, from the TripAttraction table we reach Country in a unique way. Therefore,
for the second For each we can print only the tripattractions corresponding to the
country of the main For each, as we can see in the navigation list as a constraint.
This CountryId preceded by @ (at sign) corresponds to the CountryId of the record
of the external For each where we are positioned. And this CountryId attribute is
that of Attraction, which is reached through TripAttraction. Clearly this is a Join,
with a 1 to N indirect relationship.

This is because for a tripattraction following the foreign keys we find a single
CountryId; therefore, for a CountryId we can find N tripattractions that will find it
by following this path.

If we formalize this case of 1 to N indirect relationship, we are saying that the base
table of the main For each is contained in the extended table of the nested For
each.

That case includes the simplest of all. For example, consider that if the base table
of the second For each were CountryCity, this formula would be satisfied.

5

………..……………………………………………………

for each Country
print PB1 //CountryName
for each Trip.Attraction

print PB2 //AttractionName, TripAttractionVisitTime
endfor

endfor

1

JOIN

BaseTable1 ⊂ ext(BaseTable2)

Here we see more clearly the relationships between the tables involved in this
case.

6

………..……………………………………………………

for each Country
print PB1 //CountryName
for each Trip.Attraction

print PB2 //AttractionName, TripAttractionVisitTime
endfor

endfor

1

JOIN

BaseTable1 ⊂ ext(BaseTable2)

BaseTable1

BaseTable2

1N

That is, the base table of the main one is this one, and the base table of the nested
one is this other one.

The indirect 1 to N relationship is clear. It is indirect through the extended table of
the nested For each.

7

………..……………………………………………………

2

JOIN

for each Trip.Attraction
print PB1 //AttractionName, TripAttractionVisitTime
for each Hotel

print PB2 //HotelName
endfor

endfor

BaseTable1 ⊂ ext(BaseTable2)

Now let's look at the other type of indirect 1 to N relationship, this time through
the main one, instead of through the extended table of the nested one.

For each tripattraction, we print the attraction name and visit time on that trip,
and then the hotel names.

8

………..……………………………………………………

JOIN

BaseTable1 ⊂ ext(BaseTable2)

2
for each Trip.Attraction

print PB1 //AttractionName, TripAttractionVisitTime
for each Hotel

print PB2 //HotelName
endfor

endfor

BaseTable1

BaseTable2

Here it is clearly not true that the base table of the main For each is included in the
extended table of the nested For each. There is no indirect 1 to N relationship
through this way. However...

9

………..……………………………………………………

JOIN

2
for each Trip.Attraction

print PB1 //AttractionName, TripAttractionVisitTime
for each Hotel

print PB2 //HotelName
endfor

endfor

BaseTable1

BaseTable2

...we know that for each record of the main For each we reach a record of this
table, which is also reached directly from the base table of the nested one.

10

………..……………………………………………………

JOIN

2
for each Trip.Attraction

print PB1 //AttractionName, TripAttractionVisitTime
for each Hotel

print PB2 //HotelName
endfor

endfor

BaseTable1

BaseTable2 Att

Att*

ext(BaseTable1) ∩ BaseTable2 ≠ ϕ
1

N

That is to say, in this one there will be a foreign key to this other one. They will
share this attribute (because of it, this 1 to N relationship is established between
the tables).

In short, the extended table of the main For each will have some attribute in
common with the base table of the nested one, and they will establish the Join.

11

………..……………………………………………………

2

JOIN

for each Trip.Attraction
print PB1 //AttractionName, TripAttractionVisitTime
for each Hotel

print PB2 //HotelName
endfor

endfor

ext(BaseTable1) ∩ BaseTable2 ≠ ϕ

Here they will be CountryId, CityId, foreign key to CountryCity.

We can see it clearly in the navigation list. Only the hotels corresponding to the
same city of the trip attraction will be printed.

12

………..……………………………………………………

JOIN

2
for each Trip.Attraction

print PB1 //AttractionName, TripAttractionVisitTime
for each Hotel

print PB2 //HotelName
endfor

endfor

BaseTable1

BaseTable2

ext(BaseTable1) ∩ BaseTable2 ≠ ϕ

Again, to see it more clearly, let's keep only the tables involved: here we see the
indirect 1 to N relationship.

13

………..……………………………………………………

2

BaseTable1

BaseTable2

ext(BaseTable1) ∩ BaseTable2 ≠ ϕ

1 BaseTable1 ⊂ ext(BaseTable2)

BaseTable1

BaseTable2

1N

1
N

If in the first case this base table was run through and for the nested one this other
one, and therefore the relationship was indirect 1 to N through the extended table
of the nested one, in the second case it is through the extended table of the base
table of the main one. And it is here that the 1 to N relationship is established with
the base table of the nested one.

14

………..……………………………………………………

2 ext(BaseTable1) ∩ BaseTable2 ≠ ϕ

1 BaseTable1 ⊂ ext(BaseTable2)

JOIN

BaseTable1 ≠ BaseTable2

1-N relationship

Therefore, the Join case is that of different base tables where a direct or indirect 1
to N relationship is found, according to these options: base table with extended
table, or extended table with base table.

There is no extended table with extended table.

15

………..……………………………………………………

2
ext(BaseTable1) ∩ BaseTable2 ≠ ϕ

1 BaseTable1 ⊂ ext(BaseTable2)

CARTESIAN
PRODUCT

BaseTable1 ≠ BaseTable2

NO 1-N relationship

BaseTable1

BaseTable2

1
N

JOIN 1-N relationship

That is to say, if the base table of the nested one is not this one but this other one,
there is a relationship between the extended tables, obviously, because both
arrive at the same table. However, here there will not be a Join but a Cartesian
product.

Why, if for each record of the base table of the main For each we may keep only
those of the base table of the nested one that correspond to the same record of
this table to which both arrive in a unique way?

The more indirect the relationship, the less likely it seems that the developer is
looking to take it into account, because the relationship seems more and more
distant, and if the developer is looking for it, they can always make it explicit.

16

………..……………………………………………………

2
ext(BaseTable1) ∩ BaseTable2 ≠ ϕ

1 BaseTable1 ⊂ ext(BaseTable2)

CARTESIAN
PRODUCT

BaseTable1 ≠ BaseTable2

NO 1-N relationship

BaseTable1

BaseTable2

1
N

JOIN 1-N relationship

for each
...
&var = Att
for each

where Att = &var
...

endfor
endfor

Att

Att*

Att 1

N

For example, by assigning to a variable the value of the attribute that is obtained
by following the path of the extended table of the main For each... that is to say,
the value of this attribute that matches this one.
And in the nested For each, explicitly filtering the records from which you get to
this other attribute that is called the same because it is also a foreign key to the
common table.

Let's take this opportunity to make a clarification: when we speak of a Join or
Cartesian Product, of this difference, we are referring to the implicit
determinations of GeneXus, not to whether it ends up filtering the information of
the nested one. Note that in this case it is a Cartesian Product in the sense that if
we had not written a Where, GeneXus would not add it implicitly either and all the
records of the nested one would be returned. Actually, in this case not all the
records in the nested one will be returned because we explicitly wrote a Where, so
it will actually do a Join, but not the implicit Join of GeneXus.

17

………..……………………………………………………

2
ext(BaseTable1) ∩ BaseTable2 ≠ ϕ

1 BaseTable1 ⊂ ext(BaseTable2)

CARTESIAN
PRODUCT

BaseTable1 ≠ BaseTable2

NO 1-N relationship

BaseTable2

1
N

JOIN 1-N relationship

BaseTable1

The more distant the relationship, the less likely it will be that the developer has it
in mind, or is trying to enforce it implicitly.

18

………..……………………………………………………

CARTESIAN
PRODUCT

BaseTable2

1
N

BaseTable1

for each
...
for each

...
endfor
...

endfor

The following is an interesting aspect of this case. We add one more table to make
it even clearer.

If we do the intersection of both extended tables, we are left with the tables in
common. Now, if in the main For each we place attributes from these two tables,
clearly the values that will be taken will be those obtained from each record of the
base table that meets the filters. That is to say, they will be the ones coming from
this extended table.

But what happens if these attributes are in the nested For each? Are the ones
from the extended table of this For each taken?
If by one way or the other we arrived at the same record in this table, it wouldn't
matter at all, because they would give the same value by either way. That's what
would happen if the Join was done. But there is no Join in this case. Therefore, the
values of these attributes obtained in this way will not always be the same as
those obtained in this other way.

So which path will be chosen if in the nested For each attributes are placed from
here or here? It will be that of the main For each. In fact, if we don't place a base
transaction for the nested For each and we let GeneXus calculate it, it will first
remove all the attributes of the nested For each that belong to the extended table
of the main one. And with those that are left, with those alone it will determine
the base table. That is to say, it will remove them, because it assumes that they
are reached through the main For each.

19

………..……………………………………………………

CARTESIAN
PRODUCT

for each Trip.Attraction
print PB1 //AttractionName, TripAttractionVisitTime
for each ConferenceRoom

print PB2 //ConferenceRoomName, HotelName, CountryName, CityName
endfor

endfor

For example, if we add a ConferenceRoom table with an N to 1 relationship with
Hotel, and specify these nested For each commands, where these are clearly the
base tables, we see that in the first For each nothing is requested from the tables
in common. In addition, from the base table it would only be necessary to access
Attraction to obtain AttractionName.

But if we look at the nested For each, besides an attribute of Hotel, CountryName
of Country and CityName of CountryCity are displayed. We might think that it is
then going to use the associated ones through ConferenceRoom.
However, if we look at the navigation list....

20

………..……………………………………………………

CARTESIAN
PRODUCT

for each Trip.Attraction
print PB1 //AttractionName, TripAttractionVisitTime
for each ConferenceRoom

print PB2 //ConferenceRoomName, HotelName, CountryName, CityName
endfor

endfor

...we see that it doesn't. In the nested For each it only accesses ConferenceRoom
to obtain the ConferenceRoomName and the HotelId, through which it accesses
this record in Hotel to retrieve HotelName. And there it stays. (Note that there is
no Join.)
So where does it retrieve the values of CityName and CountryName from?

From the main For each. Let's see that it accesses Attraction to retrieve
AttractionName, but also CountryId and CityId to be able to access these two
tables and retrieve CountryName and CityName, respectively.

And what would we do if we wanted the values of the country and city of the
Hotel of the ConferenceRoom?

An initial idea could be through a subtype.

21

………..……………………………………………………

for each Trip.Attraction
print PB1 //AttractionName, TripAttractionVisitTime
for each ConferenceRoom

print PB2 //ConferenceRoomName, HotelName, CountryName, CityName
endfor

endfor

HotelCountryName, HotelCityName

For example, if we define this group of subtypes and use it in Hotel instead of the
supertypes... We see that now the table has the subtypes, and it will be enough to
replace the supertypes with the corresponding subtypes in the nested For Each.

22

………..……………………………………………………

for each Trip.Attraction
print PB1 //AttractionName, TripAttractionVisitTime
for each ConferenceRoom

print PB2 //ConferenceRoomName, HotelName, CountryName, CityName
endfor

endfor

HotelCountryName, HotelCityName

Here is the navigation list with the information we were looking for.

However, it doesn't seem a good idea to place a subtype just because we want to
remove the ambiguity in a case of nested For Each commands. Note that here
there is no ambiguity in the model.

23

………..……………………………………………………

It would be different if this table existed to introduce two paths to get to these
other ones.

24

………..……………………………………………………

CARTESIAN
PRODUCT

for each Trip.Attraction
print PB1 //AttractionName, TripAttractionVisitTime
Do 'PrintRooms'

endfor

Sub 'PrintRooms’
for each ConferenceRoom

print PB2 //ConferenceRoomName, HotelName, CountryName, CityName
endfor

endsub

The smartest way to solve this problem, then, is to leave the model unchanged
and write the second For each in a subroutine. Now the navigation list shows
exactly what we want.

Here we are accessing CountryName and CityName. From ConferenceRoom, and
not from TripAttraction.

25

………..……………………………………………………

2
ext(BaseTable1) ∩ BaseTable2 ≠ ϕ

1 BaseTable1 ⊂ ext(BaseTable2)

CARTESIAN
PRODUCT

BaseTable1 ≠ BaseTable2

NO 1-N relationship

BaseTable2

1
N

JOIN 1-N relationship

BaseTable1

Before moving on, let's focus again on the second Join case....

26

………..……………………………………………………

2

BaseTable2

ext(BaseTable1) ∩ BaseTable2 ≠ ϕ

1 BaseTable1 ⊂ ext(BaseTable2)

BaseTable1

BaseTable2

1N

1
N

BaseTable1

BaseTable1

... that we had seen, to examine for a moment what happens if the relationship
exists through subtypes. Actually, let's look at the simplest example of all.

What will happen if this relation is not created using supertypes, but subtypes?

27

………..……………………………………………………

for each Attraction
print PB1 //AttractionName
for each Hotel

print PB2 //HotelName
endfor

endfor

In the example we saw, if instead of CountryId and CityId, in Hotel we place these
subtypes...

If our nested For each commands are written like this: that is, first the Attraction
table is run through and for each one the Hotel table is run through, then GeneXus
finds the relationship...

28

………..……………………………………………………

for each Attraction
print PB1 //AttractionName
for each Hotel

print PB2 //HotelName
endfor

endfor

... and performs the Join. We see that in the first For each it retrieves the values of
CountryId and CityId, and then in the nested For each it filters the Hotel records
for which the subtypes match these.

However...

29

………..……………………………………………………

for each Attraction
print PB1 //AttractionName
for each Hotel

print PB2 //HotelName
endfor

endfor

for each Hotel
PB2 //HotelName
for each Attraction

print print PB1 //AttractionName
endfor

endfor

... if the For each commands are written in reverse order—that is, in the external
one the hotels are run through and in the nested one the attractions are run
through—a join will not be made, but a Cartesian product.

The rule is: a Join is made between supertype and subtype, but not the other way
around. That is to say, since in hotel we don't have CountryId and CityId but
subtypes of these—particular cases—it is not clear for GeneXus that the developer
wants to go from the particular to the general and then only list the attractions
with the same values for the supertypes.

30

………..……………………………………………………

for each
//SUPERTYPE
for each

//SUBTYPE
endfor

endfor

JOIN

BaseTable1

BaseTable2CARTESIAN
PRODUCT

for each
//SUBTYPE
for each

//SUPERTYPE
endfor

endfor

Here it is summarized.

31

………..……………………………………………………

CARTESIAN
PRODUCT

JOIN

for each TripAttraction
print PB1 //AttractionName, TripAttractionVisitTime
for each ConferenceRoom

print PB2 //ConferenceRoomName, HotelName, CategoryName
endfor

endfor

for each TripAttraction
print PB1 //AttractionName, TripAttractionVisitTime
for each Hotel

print PB2 //HotelName, CategoryName
endfor

endfor

BaseTable1 ≠ BaseTable2

Finally, (going back to the case without subtypes) before moving on to the case of
the same base table, let's add that both in the case of a Join and of a Cartesian
Product, it is possible to use in the nested For each attributes of the extended
table of the main one that are not in the extended table of the nested one. In the
two cases shown in the nested For each, a request is made to print CategoryName
which is not in the extended table of its For each. But it is in the extended one of
the parent For each.

Therefore, for each tripattraction the values of these two attributes are printed,
and the value of CategoryName is obtained, which will be used in the nested For
each as the given value. In the case of the Join, the values of CountryId and CityId
are also obtained precisely to make the Join.

Then, in the first case, all the Hotels of the same country and city are run through
(there the retrieved values of CountryId and CityId are used), and for each one the
name of the hotel and the name of the category obtained in the first For each are
printed.

In the second case, all the conferencerooms are run through (without filters
because there is no Join) and their name, the name of their hotel and the value of
CategoryName from the parent For each attraction are printed.

Remember that to determine the base table of the nested For each (as well as to
solve the navigation) the attributes that are in the nested one and are already part
of the extended one of the main one are removed first. It is for this reason.

32

………..……………………………………………………

CONTROL
BREAK

BaseTable1 = BaseTable2

BaseTable1

for each Trip.Attraction order CategoryName
print PB1 //CategoryName
for each Trip.Attraction

print PB2 //AttractionName, TripAttracionVisitTime, CityName
endfor

endfor

Now, let's examine the control break. We know that it takes place when the base
table of every For each command is the same and it only makes sense when we
want to process grouped information. It can be grouped by any attribute or set of
attributes of the extended table.

For example, we group according to the value of an attribute of this table, which
should appear in the order clause, and we process all the associated records of this
table (and the extended table) that have the same value for that attribute.

So, for example...

33

………..……………………………………………………

CONTROL
BREAK

BaseTable1 = BaseTable2

for each Trip.Attraction order CategoryName
print PB1 //CategoryName
for each Trip.Attraction

print PB2 //AttractionName, TripAttracionVisitTime, CityName
endfor

endfor

We group the tripattractions by category, list for each group the category name,
and scroll through the tripattractions of that category, printing the attraction
name, visit time and city name of the attraction, for each of the tripattractions
with the same category.

34

………..……………………………………………………

CONTROL
BREAK

BaseTable1 = BaseTable2

JOIN

BaseTable1 ≠ BaseTable2

OR

So far we didn't worry about the determination of the base table of every For each
command because we took it for granted when using the base transaction. But
when we leave this task to GeneXus, what was a Join can become a Control Break.

We will see this by returning to the last Join case that we had analyzed.

35

………..……………………………………………………

2

JOIN

for each Trip.Attraction
print PB1 //AttractionName, TripAttractionVisitTime
for each Hotel

print PB2 //CityName
endfor

endfor

ext(BaseTable1) ∩ BaseTable2 ≠ ϕ

Country.City

There is a slight difference: in the nested For each we are printing, instead of the
names of the hotels with the same city of the trip attraction, the names of the city
of each one of those hotels.

Note that if we had specified Country.City as the base transaction instead of Hotel,
then this would be the base table of the nested one, and it would be a particular
case where the second For each would only return one record.

36

………..……………………………………………………

2

JOIN

for each Trip.Attraction
print PB1 //AttractionName, TripAttractionVisitTime
for each Hotel

print PB2 //CityName
endfor

endfor

ext(BaseTable1) ∩ BaseTable2 ≠ ϕ

Country.City

for each Trip.Attraction
print PB1 //AttractionName, TripAttractionVisitTime
print PB2 //CityName

endfor

We see it clearly in the navigation list that indicates For First instead of For Each.
Because, of course, CountryId, CityId are the primary key of the table.

It's as if the For each had not been specified and the printblock had been printed
directly, because CityName is in the extended table of TripAttraction.

37

………..……………………………………………………

2

BREAK

for each Trip.Attraction
print PB1 //AttractionName, TripAttractionVisitTime
for each Country.City

print PB2 //CityName
endfor

endfor

BaseTable1 = BaseTable2

That's why if we don't set this base transaction and we let GeneXus determine the
base table by itself, it will choose TripAttraction; that is, it will understand that we
want to implement a control break, because assuming that the developer doesn't
write unnecessary For each commands, nothing else will make sense.

The navigation list will look like this.

However, this will not make any sense either, because it will be a control break by
the primary key; that is, it will work in the nested For each with the same record of
the main For each every time.

38

………..……………………………………………………

2

BREAK

BaseTable1 = BaseTable2

order CategoryNamefor each Trip.Attraction
print PB1 //CategoryName
for each

print PB2 //CityName
endfor

endfor

It would still be necessary to specify an order clause to break by some attribute or
set of attributes whose values can be repeated. For example, CategoryName. And
so we have the same example of control break that we saw before.

39

………..……………………………………………………

CONTROL
BREAK

BaseTable1 = BaseTable2

JOIN

BaseTable1 ≠ BaseTable2

CARTESIAN
PRODUCT

1-N relationship

yes no

ext(BaseTable1) ∩ BaseTable2 ≠ ϕ

BaseTable1⊂ ext(BaseTable2)

In summary, if the base tables are different, GeneXus will look for a 1 to N
relationship of one of these two types. If it finds it, it will implement an implicit
Join. Otherwise, it will not implement any Join. We call this case a Cartesian
product. However, note that calling it a Cartesian product doesn't mean that it is
actually one. If the developer explicitly adds a filter, it will clearly bring the filtered
records, so there will be a sort of Join, but it will not be the automatic Join. We say
the case is a Cartesian product only from the point of view of the automatic filters
that GeneXus determines: that is, in this case, none.

The control break is clear.

This is the end of the formal analysis of the three types of possible navigations
when there are nested For each commands.

40

………..……………………………………………………

training.genexus.com

wiki.genexus.com

training.genexus.com/certifications

41

