

Our objective now is to implement the Master Panel Header.

Layouts, by default, contain a single layer, in which each control occupies its own space,
without overlapping the others. Each. control has its own space reserved.

So, for example, if we start by modeling in the Header only the background image and the
chatbot button, to overlay them we will have to place each one in a different layer.

When there is a table in row 1 of the Main table (to give it the “Header” role for accessibility, as
we saw in the previous video), if we drag into it an image control, for example, for the
background image and a button control for the chatbot (with this image), they will necessarily
be either in two consecutive rows or in two consecutive columns; that is, each control will
occupy a separate space (because these rows or columns do not overlap).

Therefore, a control can only start where the other ends, either vertically, horizontally, or
horizontally and vertically (in the case of a 2x2 table where the controls are placed diagonally).

We could turn the table into a Flex container... or into a Canvas container.

If we turn it into a Flex container... the table, which is a two-way control (it can have many rows
and many columns) becomes a kind of flexible one-way table:

• A row (Row direction) with n consecutive controls, either from left to right or from right to
left,

• Or a column (Column direction) with n consecutive controls.

In this way, we see that the Columns Style and Rows Style properties of the Table control
disappear, and instead, these ones are displayed. In particular, we see how the Flex Direction
property determines whether the container’s controls are placed along a row or a column. The
controls included there will be placed one after the other, and we will have to set the spacing
between them through properties, such as the gap property, at the level of the class that we
associate with it.

But to overlay the internal controls of the container we need the other type of container, the
Canvas.

If we compare the properties to the table control, we see that it has 3 fewer properties:
Columns Style and Rows Style disappear and there is no replacement (note that in Flex there
was Flex Direction). Here there is none because the concept of row and column disappears
completely. It will be a container where everything that is placed inside it will be in an absolute
position relative to the edges of the container, and it is independent of the existence of other
controls that are also there. The concept of rows and columns loses meaning.

The Auto Grow property also disappears, which for the Canvas will always be True.

What will happen, then, is that all the controls inside the Canvas will add properties for
absolute positioning. Each one will be in an absolute position relative to the edges of the
Canvas.

And absolute positioning means that it doesn’t depend in any way on the other controls that
are there (inside or outside, of course); only the Canvas matters as a reference.

That's why when we’re positioned over the image control, this Absolute position group is
displayed...

And the same happens for the button control.

The last property is the easiest to understand: it determines the layer in which the control will
be placed.

To achieve the overlay, the other dimension –z– is displayed; it is precisely the one that
introduces layers. The deepest layer will be the one with value 0, and from there on we can
number the layers.

In our case we would leave the image with layer 0 and place the button in layer 1 so that it is
on top.

Now let's take care of the rest of the properties that are related according to two axes: x and y.

As we said, as far as the positioning of each control within the Canvas is concerned, the
sibling controls do not matter at all. Only the control itself and the boundaries of the Canvas
matter.

So let's analyze the Chatbot button.

These properties are relative to the positioning of the button regarding the x-axis. And these
regarding the y-axis.

The ones for each axis are related to each other, so when we set 2 of the properties, the 3rd
one will be automatically determined as well, as a percentage.

Let's see it with those of the x-axis.

This is how they will be initially, indicating: 0 dips relative to the left edge of the Canvas, 0 dips
relative to the right edge, and therefore that of the width of the control will be 100% of the
remaining width of the Canvas, which in this case will correspond to the total width.

In short, it is as if two columns were placed on each side of the control, and the left one was
given that of the Left value as width, the right one was given the Right value, and the middle
one, where the control is placed, was given the Width value.

Clearly, the third one is determined by setting 2, because added together they should give
100% of the width of the canvas.

If we look in Figma for the width of the button and the distance that separates it from the right
end we see this.

So, if we set the Width to be 139 dips (or pixels) when we leave the field we will see this
change automatically in the Right property. What do the current values indicate? That the
button control will be 0 dips from the left edge of the Canvas, that is to say, next to it; it will
have a width of 139 dips, and what will distance it from the right edge of the canvas will be
100% of the remaining size, relative to the width of the canvas.

However, we want it to be 21.2 dips (rounded to 21) from the right edge of the Canvas.
Therefore, by specifying that distance from the right, it automatically changes the distance
relative to the left edge to 100%.

Again: it will be 100% of what results from subtracting the fixed values of 139 dips and 21 dips
from the width of the Canvas.

Left, Width and Right can be all 3 in percentages (and must add up to 100%), two of them

can be in percentages (and must add up to 100%), or only one, in which case it will always be

100%.

The same type of analysis applies to the other axis, the y-axis.

So we will have Top for the distance from the top edge of the canvas, Height for the height of
the control and Bottom for the distance from the bottom edge.

If we look for the dimensions in Figma, we see that the image will be 695 pixels or dips high,
and that the button will start vertically at 660 dips or pixels from the top edge of the canvas.

On the other hand, the height of the button will be 137 pixels or dips....

We will define the properties as follows: Top: 660, Height: 137, and as we know, by setting 2,
the third one, Bottom, will necessarily be 100%. 100% of what? Of subtracting from the height
of the Canvas, which we haven't said what it is yet, 660 corresponding to Top and 137
corresponding to Height.

What will be the height of the Canvas? We must specify it. We could think of setting the height
of the canvas to 695 dips, so that the button overflows its limit. And then that Bottom ends up
being a negative number: -102 dips in this case.

However, even if we set that Height of 695 for the Canvas, it will stretch it, because internally
every canvas has the Auto Grow property set to true; this will cause it to stretch to contain all
its controls in the vertical direction. Therefore, the height of the Canvas will end up being of
695 plus these 102. This means that this Bottom of 100% will end up being of 0 dips, that is to
say, the button will be placed vertically on the lower edge of the canvas.

So, regardless of whether we assign it 695 dips, the height of the canvas will actually end up
being the sum of this height and this height, which gives 797 dips.

So far so good. But note that this solution comes with a problem. If the Header expands to
end where the button ends, then we should consider that the layout of any panel loaded in the
ContentPlaceHolder will start here... and not here.

Then, if we want to keep this Master Panel structure we will have to modify the
implementation of this section, changing the height of this table to this one, instead of this
one...
...and the vertical alignment that we had given to this other table, since now it can no longer be
in the middle...
Also, we will have to change the top and bottom margin that we had given to this textblock.

This implementation of the abstract layout of the Master Panel will look more or less like this:
with a main table of 3 rows: in the first one, of Accessible Role Header, a canvas; in the second
one, a table with Accessible Role Main with the content placeholder, and the third one for the
Footer...

And here we see the implementation of the Home panel or the Attractions panel... where we
will have to change the way in which we placed these controls vertically and the height of this
table...

The other alternative, which wouldn't require making these changes, and which is more
conceptually appropriate, would be to consider that since there is indeed a triple overlay –of
the Header section, the button, and the ContentPlaceHolder– actually we should change the
structure of the Master Panel and use a Canvas to model the triple overlay.

This is how the abstract layout of the Master Panel would look like: the main table, now with
two rows instead of three: in the first one, a canvas that contains another canvas with the
Header accessibility property (that's why I need it; to assign it the Role property, and because
here the menu, the logo and the text will also overlap, as we will see later), the button, and the
table with the ContentPlaceHolder and the Main property for the Role. The Footer goes in the
second row of the Main table.

In this case, we must not modify anything in the layout of the panel that will be loaded in the
ContentPlaceHolder, because it begins here.

In the following video, we will implement all this in GeneXus.

