
………..……………………………………………………

Database update

Business Components. Update or Insert (batch) and Data Provider

1

………..……………………………………………………

Business Component

Insert, Update, Delete
Hospital KB

Focusing on a KB for a health care service, in previous videos we analyzed how to
insert, update, and delete through the Business Component of a two-level
transaction.

2

………..……………………………………………………

In those videos, starting from the two-level OfficeVisit transaction, which had a
series of declared rules, in particular some error rules, what we tested was to
insert an office visit with a patient, update an office visit (changing the office and
modifying a line, deleting one and adding another) and deleting an office visit
through a Business Component variable.

3

………..……………………………………………………

Monday Tuesday Wednesday Thursday Friday

Shift 1
morning

Shift 2
intermediate

Shift 3
evening

Physician: 1
Office: 1

Physician: 1
Office: 1

Physician: 1
Office: 1

Physician: 1
Office: 1

Physician: 1
Office: 1

Physician: 1
Office: 1

Physician: 1
Office: 1

10-10-2022 10-11-2022 10-12-2022 10-13-2022 10-14-2022

1

1

Now we want to assign in batch mode the office visits for a given physician in the
week following a given date, in his or her preferred office.

For example, for doctor 1, office 1, we will want this office visit schedule: Monday,
Wednesday and Friday in the shift chosen for those days, for example, 1....
Tuesdays and Thursdays on the next shift, 2....
And Tuesdays and Thursdays, in the remaining shift, shift 3...

4

………..……………………………………………………

10-10-2022 10-11-2022 10-12-2022 10-13-2022 10-14-2022

Basically, we will only want to assign the office visits without patients; that is to
say, only the records corresponding to the 7 headers of the transaction, meaning
that we will work on the OfficeVisit table, complying with all the checks and rules
of the transaction, so we will do it with a business component.

5

………..……………………………………………………

For example, using a single variable, filling in the required data for the first record
and applying the Insert method to it; then clearing it and doing the same for the
following office visit, on Wednesday: that is, loading the data and applying
Insert...And so on...

We clear, load the data for Friday, shift 1... insert.
We clear, load data for Tuesday, shift 2... insert.
We clear, load data for Thursday, shift 2... insert.
We clear, load data for Tuesday, shift 3... insert.
We clear, load data for Thursday, shift 3... insert.

6

………..……………………………………………………

Here we implement the requirement with a Web Panel where we ask the user for
the data (here we will show the resulting message collection) and in the event...
we first clear the message collection that would have been shown in a previous
execution, call this proc that returns for this date, the date of the following
Monday.

7

………..……………………………………………………

And instead of asking 7 times for memory for the variable, assigning the
corresponding elements for each one, and doing Insert, we choose to use the
repetitive structure “for” to write the insertion only once for Monday, Wednesday
and Friday, where only the day changes, and everything else is kept...

8

………..……………………………………………………

...Then another one for Tuesday and Thursday, which is the following shift
(calculated with this proc), and here we assign it...

9

………..……………………………………………………

…and then another “for,” also for Tuesday and Thursday, but in the remaining
shift.

Note that in addition to improving the code, in short what we are doing is use a BC
variable, assigning it the header values, and using the Insert method to try to
insert in the corresponding table.

10

………..……………………………………………………

Then we process the messages obtained.

11

………..……………………………………………………

Let's try this when there are no office visits yet in the table.

Of course, if we enter nonexistent foreign key values—for example, a nonexistent
doctor—the insertion attempts will all fail. The insertion will be attempted by
doing the same checks as through the transaction.

12

………..……………………………………………………

Now let's see the successful path.

13

………..……………………………………………………
14

………..……………………………………………………

&officeVisits

(1) (2) (3) (4) (5) (6) (7)

10-10-2022 10-11-2022 10-12-2022 10-13-2022 10-14-2022

&officeVisits.Insert()

Another way to program this would be to load each BC into an item in a collection,
and then give the Insert order to the entire collection.

We know that internally each item will be accessed and an Insert of that item will
be attempted.

15

………..……………………………………………………

That is to say, we would define an officeVisits variable, collection of the OfficeVisit
BC.

And we would load the information in the &officeVisit variable, but instead of
already inserting in the database, we would ask to add the BC to the collection, for
all the BC instances.
And only later we would ask for the insertion of the entire collection.

Of course, here if we want to get the messages of each Insert (that of each item)
we will have to run through the collection and call the subroutine.

And we should clear the BC collection before we start.

16

………..……………………………………………………

If we try now with the empty table as before, it should give exactly the same
result...

17

………..……………………………………………………

Wouldn't it be simpler to do it using a Data Provider instead of loading the
collection manually?

That is to say, replace all this...

18

………..……………………………………………………

... with an invocation to this Data Provider, which returns a collection of the
OfficeVisit BC...

19

………..……………………………………………………

...loaded in the same way as in the web panel event, but at a higher level.

Then we load the collection variable with the result of the invocation to the Data
Provider, to which we must pass all the parameters.

20

………..……………………………………………………

Let’s try it. Again, having cleared the table, we see that it gives exactly the same
result.

21

………..……………………………………………………

Of course, we can use the Data Provider to return a collection of Business
Components as we did here, which we then assign to this collection variable, or to
return a single one and do the Insert on that one.

For example, here we have this other Data Provider that will return a single BC,
this one, OfficeVisit. Note that collection is set to False, and only one header is
loaded according to the values received in the parameters.

22

………..……………………………………………………

Let's add a button that allows inserting a single office visit with the screen
variables, with those values. Then we use the non-collection BC variable,
&officeVisit, that we already have declared... and load it with what is returned by
this Data Provider, to which we pass the screen variables as parameters.

The variable is indeed of the BC data type, not collection.

Then we simply ask it to insert in the database and process the messages, adding
the Commit, of course.

23

………..……………………………………………………

Let’s try it. For example, for a date prior to this first one...

24

………..……………………………………………………

...we insert successfully.

25

………..……………………………………………………

Now, suppose that in case the record exists we would like to update it; for
example, we place the same primary key, but we want to change the office.

26

………..……………………………………………………

Of course, a duplicate primary key error will occur, because we tried an Insert and
the record already existed.

27

………..……………………………………………………

We can think, then, that to solve this we can just modify the method that we are
invoking, changing it to InsertOrUpdate, so that it first tries to insert, and if it fails
due to a duplicate key, then it tries to update.

28

………..……………………………………………………

If now we try again to change the office of this doctor’s visit to number 2... we see
that indeed it did what we wanted.

29

………..……………………………………………………

However, let's see what happens if we want to do the same but this time, for
example, for this office visit, for this day in the intermediate shift, and doctor 1,
who has another visit for the same day, in another shift...

30

………..……………………………………………………

Then we place that day, doctor 1, shift 2 which is the intermediate shift and we
want to change the office from 1 to 2.

Oops, why did we get this error indicating that doctor 1 already has 2 office visits
assigned for that date?

It's because the Insert is tried first, and that's where this error is going to occur.

31

………..……………………………………………………

Let's remember the order in which the checks are triggered: before checking the
uniqueness of the primary key, it will first trigger the procedure that will calculate
the number of shifts for that doctor, and if the result is 2 or more, the error rule
will be triggered.

What proves interesting here is that the uniqueness of the record will never be
checked. Why?
And there is something very important that should be known: due to performance
reasons, and assuming an optimistic strategy, in most cases, the insertion is not
supposed to fail due to dupe PK. Therefore, all checks will take place first, and then
the database INSERT command will be sent to the DBMS. This means that the
INSERT is sent only when these previous checks were successful. And upon trying
the Insert, the DBMS may return the dupe key error. And only then we will know
whether another record with that key already existed or not.
So, if any of these previous checks fails, for example, due to this error rule, there is
no attempt for the Insert, and we cannot know, either, whether a record with that
key already existed that would also cause the insertion to fail.

In this case, the Update is not attempted, because it is only executed if the Insert
failed because of a duplicate key.

32

………..……………………………………………………

InsertOrUpdate()

&officeVisit.InsertOrUpdate() If not &officeVisit.Insert()
for &message in &officeVisit.GetMessages()

if &message.Id = “DuplicatePrimaryKey”
&officeVisit.Update()

endif
endfor

UpdateOrInsert()

If we translate the logic of the InsertOrUpdate method to what happens in the
background, it would be something like this:
The Insert is tried, and if it works, it continues with the code that comes after. If it
doesn't work, only if it is caused by a duplicate primary key, the Update is tried,
which may or may not work, of course.

But we have to bear in mind the behavior we have just described. That is, if the
Insert fails due to something else prior to the actual attempt for insertion, since it
is never known whether the record already existed, then it will never execute the
Update.

The reverse method has not yet been implemented in GeneXus.

33

………..……………………………………………………

UpdateOrInsert()

&officeVisit.UpdateOrInsert() If not &officeVisit.Update()
for &message in &officeVisit.GetMessages()

if &message.Id = “PrimaryKeyNotFound”
&officeVisit.Insert()

endif
endfor

If not &officeVisit.Update()
&officeVisit.Insert()

endif

But it should be analogous, in the sense that the Insert should be tried only if the
Update cannot be done because the record does not exist and not because of
anything else.

Since we don't have this method yet, we can try the Update and if it fails for
whatever reason, try the Insert anyway, knowing that if the failure was not
because the key did not exist, then the Insert will inevitably fail.

34

………..……………………………………………………

UpdateOrInsert()

&officeVisit.UpdateOrInsert() If not &officeVisit.Update()
for &message in &officeVisit.GetMessages()

if &message.Id = “PrimaryKeyNotFound”
&officeVisit.Insert()

endif
endfor

If not &officeVisit.Update()
&officeVisit.Insert()

endif

Of course, we could also be more specific and try the Load method, and ask if it
was successful or not, and then order an Update or an Insert, respectively.

35

………..……………………………………………………

UpdateOrInsert()

&officeVisit.UpdateOrInsert() If not &officeVisit.Update()
for &message in &officeVisit.GetMessages()

if &message.Id = “PrimaryKeyNotFound”
&officeVisit.Insert()

endif
endfor

If not &officeVisit.Update()
&officeVisit.Insert()

endif

If we want to be more efficient, we can search for the existence of the record with
a Find formula, for example.

36

………..……………………………………………………

Let's try this solution.

37

………..……………………………………………………

Now we were able to change the office.

38

………..……………………………………………………

Monday Tuesday Wednesday Thursday Friday

Shift 1
morning

Shift 2
intermediate

Shift 3
evening

Physician: 1
Office: 1

Physician: 1
Office: 1

Physician: 1
Office: 1

Physician: 1
Office: 1

Physician: 1
Office: 1

Physician: 1
Office: 1

Physician: 1
Office: 1

10-10-2022 10-11-2022 10-12-2022 10-13-2022 10-14-2022

1

1

Let's go back to the batch insertion. Previously we had inserted all these records
without any problems because there were no other records for that week in the
database. But what if they existed?

39

………..……………………………………………………

Monday Tuesday Wednesday Thursday Friday

Shift 1
morning

Shift 2
intermediate

Shift 3
evening

Physician: 1
Office: 2

Physician: 2
Office: 1 Physician: 1

Office: 2

Physician: 1
Office: 2

Physician: 1
Office: 2

Physician: 1
Office: 1

Physician: 1
Office: 1

Physician: 1
Office: 1

Physician: 1
Office: 1

Physician: 1
Office: 1

Physician: 1
Office: 1

Physician: 1
Office: 1

1

1

10-10-2022 10-11-2022 10-12-2022 10-13-2022 10-14-2022

For example, let's suppose that these records already existed for that week, when
we want to launch the batch process.

We will want to do the same as in the previous individual case: that is, insert if
there is no record with that key and otherwise update.

So, what should happen with each one? For the first one, there already exists a
record with that primary key, this one, so it will try the Update, which will work,
changing the office for this one, number 1.
For the second one, it checks if there is a record with that key, and since it doesn't
exist, it tries the Insert, but it will fail because of a duplicate candidate key. The
reason is that office 1 is already used.
For the third one, it checks if there is a record with that key; it does not exist, so it
tries the Insert, which will be successful.
For the fourth one, it tries the Insert, which will count how many office visits are
already entered for that day for the doctor, and since it will give 1, no error will be
triggered and it will be possible to insert without any problem.
For the fifth one the same thing will happen, it will insert without any problem.
Now comes the sixth one and since there is already a record with that key, it tries
the Update, which will be successful, modifying the office of the existing record.
For the last one, since there is no record with that key, it will try the Insert, but it
will fail. Why? Because it will find that doctor 1 already has 2 office visits scheduled
that day.

40

………..……………………………………………………

How do we change the code we had to make it work like this?

It is no longer useful to launch a massive operation on the collection of the 7 items
returned by the Data Provider. We will have to work individually, running through
the entire collection and in each case checking for the existence of the record with
that key. Here we must use the data of each BC.

41

………..……………………………………………………

Or, if we want to do it in a simpler way, we try the Update and if it doesn't work,
we try the Insert...

Let’s do so.

42

………..……………………………………………………

Here we have the initial data...

43

………..……………………………………………………

And now let's try to launch the schedule in batch mode, for the following week,
doctor 1, shift 1.

Let's compare the messages generated with what we expected...

44

………..……………………………………………………

The first one was updated successfully, fine.

45

………..……………………………………………………

The second one failed due to duplicate candidate key, good.

46

………..……………………………………………………

The third one was successfully inserted, good.

47

………..……………………………………………………

The fourth one was successfully inserted, good.

48

………..……………………………………………………

The fifth one was also successfully inserted, OK.

49

………..……………………………………………………

The sixth one was successfully updated, OK.

50

………..……………………………………………………

And the last one failed because the doctor already had 2 office visits for that day,
OK.

Let's see that the office of this visit has indeed changed... OK.
And this one... fine too.

51

………..……………………………………………………

OfficeVisitDate 10-13-2022

PhysicianId 1

PhysicianName Doctor 1

ShiftId 3

ShiftName Shift evening

MedicalSpecialtyId 1

MedicalSpecialtyName Family Medicine

OfficeId 1

OfficeVisitLastNumber 0

Patient

&officeVisit

PatientId 2

Patient Name Patient 2

OfficeVisitPatientNumber 2

PatientId 3

Patient Name Patient 3

OfficeVisitPatientNumber 1

OfficeVisitDate 10-13-2022

PhysicianId 1

PhysicianName Doctor 1

ShiftId 3

ShiftName Shift evening

MedicalSpecialtyId 1

MedicalSpecialtyName Family Medicine

OfficeId 1

OfficeVisitLastNumber 2

Patient

So far, we have worked with two-level BCs, but their second level was empty.
What we are studying here in relation to the Insert or Update will have no
difference with the case in which there is a patient collection that is not empty.

Next, after addressing the differences between business component methods, we
will show how to perform the Insert or Update operations with a two-level BC
where we will work with the lines, but we will do it at the highest level, using a
Data Provider.

52

………..……………………………………………………

training.genexus.com

wiki.genexus.com

training.genexus.com/certifications

53

