
………..……………………………………………………

Database update

Business Components. Rules, events, and checks. Review part 2

1

………..……………………………………………………

Business Component

Insert, Update, Delete
Hospital KB

Focused on a KB for a health care service, in the previous video we saw all the
rules, events, and checks that were performed when trying to insert data...

2

………..……………………………………………………

...in a two-level transaction and through the Business Component. Here we will
look at update and delete.

3

………..……………………………………………………

We will want to change an office visit. Since the date, physician, and shift are part
of the primary key, none of these attributes can be modified for an existing record.
We can only modify the office because the last number is used for the serial rule,
so it cannot be changed.

The patient entered in a line cannot be changed either because it is part of the
primary key. Only the secondary attribute corresponding to the number given to
the patient to receive care could be changed, except for the fact that we placed a
noaccept rule for that attribute.

4

………..……………………………………………………

We can comment it to have an updatable attribute for each line. Let's comment
both the serial rule and the noaccept rule so we can also modify the header
attribute, the one for the last given line number.

Of course, we can also add and delete lines to the office visit.

OK, so we want to be able to change the office of a given office visit, change the
number assigned to a scheduled patient, add another patient with their
corresponding number, and delete one.

5

………..……………………………………………………

Monday Tuesday Wednesday Thursday Friday

Shift 1
morning

Shift 2
intermediate

Shift 3
evening

Physician: 1
Office: 2 Physician: 2

Office: 1

Physician: 1
Office: 2

Physician: 1
Office: 2

Physician: 1
Office: 2

Physician: 2
Office: 3

Patient: 2

Patient: 1

3

Patient: 3

Let's start with this: update Thursday's office visit, changing the office to 3 and
adding patient 3... if we do it through the transaction, first we have to locate the
record to be updated...

6

………..……………………………………………………

... by clicking here, the transaction is called by passing the primary key and the
Update mode as parameters...

7

………..……………………………………………………

In this way, the record of that primary key is searched for in the header table and
its information is retrieved. The same is done for all the related records in the
second level table, and their values are retrieved.

8

………..……………………………………………………

We see that the OfficeId field is the first editable field. None of the previous ones
can be modified.
We change it to 3. Of course, if there were another office visit for that day on that
shift in that office, here we would get an error stating that this (candidate) key
already exists. This is not the case.

9

………..……………………………………………………

Let's change the number given to the first patient to 2, add patient 3, with number
3, and also change the last number to 3. After confirming, the operation
performed will be an update of everything, even if at the lines level this means
changing one line and adding another.

10

………..……………………………………………………

Monday Tuesday Wednesday Thursday Friday

Shift 1
morning

Shift 2
intermediate

Shift 3
evening

Physician: 1
Office: 2 Physician: 2

Office: 1

Physician: 1
Office: 3

Physician: 1
Office: 2

Physician: 1
Office: 2

Physician: 2
Office: 3

Patient: 2

Patient: 1

2

Patient: 4

Patient: 3 4

Now we will want to work in this way, but through the Business Component.

Let's suppose that, in addition to changing the office, we want to change patient 3
for patient 4. Since we cannot do it directly in the record because it is part of the
primary key and it cannot be updated, we will have to delete the record and insert
a new one with the correct patient and the same number that patient 3 had.

11

………..……………………………………………………

We have added 2 more variables for the patient we want to replace with the other
one for the office visit with that date, physician, and shift.
We will add an event to update the office visit of this primary key....

12

………..……………………………………………………

First, we have to load the data corresponding to the primary key in the BC
variable. The operation will only be successful if there is a record in OfficeVisit with
that key.

13

………..……………………………………………………

We can check it with the Success method (or its opposite, Fail). We will display
messages on the screen indicating whether the record we tried to load exists. We
will also retrieve the messages in the message collection. Let's try it quickly.

14

………..……………………………………………………

We know that this record (the one from Thursday) exists...

15

………..……………………………………………………

... so we try its key... it was found!

16

………..……………………………………………………

And now we enter a date for which there are no office visits... We see this other
one.

The Success method was False and the message collection shows an error
indicating that the primary key was not found.

17

………..……………………………………………………

Let's remove this check because it will be done anyway when we do the update.

18

………..……………………………………………………

Next, we modify the office visit according to the screen variable; we add 1 to the
last number given...

19

………..……………………………………………………

... because it is the one we will use to change the number of the first patient, the
one in this variable.

20

………..……………………………………………………

To do so, remember that we have to use a variable of the BC data type of each
line; and use the GetByKey method of the patient collection of the BC that we
loaded here.

21

………..……………………………………………………

We have to send the line ID to the method so that it can return a reference to that
item in the collection. It will be a reference to the item itself, to its memory
location; it will not be a copy.

22

………..……………………………………………………

Therefore, it will be enough to modify the value of this element for this variable,
because it will be modifying the item of the collection directly. There is no need to
do any update. This is enough.

23

………..……………………………………………………

Now we want to delete the line corresponding to this patient, to insert another
one and change the patient.

24

………..……………………………………………………

But before deleting it, we need to retrieve the number that was assigned to it. To
do so, we assign what’s shown on the right to a variable where we will store that
value. Here we are retrieving a reference to the BC of the lines that have this value
in the identifier. And from that BC, we are asking for the Patient Number.

25

………..……………………………………………………

Now we can delete the line. To do so, on the list of patients for an office visit, we
run the RemoveByKey method, to which we send the identifier of the line that we
want to delete, which is the ID of this patient, that of the second variable of the
web panel screen.
For now, this method only deleted the item from the collection in memory. We
have not done anything in the database yet.

26

………..……………………………………………………

Lastly, we must add a new item to the collection, for the substitute patient, with
the number given to the patient being replaced.

27

………..……………………………………………………

We still need to insert this item to the collection. We do it with the Add method.

28

………..……………………………………………………

In this case, it was essential to ask for new memory for this BC variable of the line,
because we had already used it here. If we didn't ask for new memory, then we
would be inserting to the collection the same location in memory that was already
there, so instead of 2 lines—one for patientId and another for patient3Id—we
would have only one, with these values that will have overwritten the first ones.

29

………..……………………………………………………

At this point, we have already made all the changes we wanted on the BC variable
that we loaded from the database. Now we need to ask for what we would ask in
the transaction by pressing the Confirm button. That is to say, to update the
information in the database, running all the Business Component checks.
If the result of the Update is successful, we commit. And in any case we retrieve
the messages that are generated. Let's try this.

30

………..……………………………………………………

For this office visit, we want to change the office to 2, give patient 2 the number
following the last one and update the last one; delete patient 3 and add patient 4
with their number.

31

………..……………………………………………………

So here we choose these values, those of that primary key... office 2, patient 2; 3
that we want to change to 4. Success, as we expected.

32

………..……………………………………………………

Now let's cause the update to fail to confirm that it's checking everything that we
would expect it to check.

For example, let's try to change the office to 3 (no problem), give patient 2 the
number following the last one (no problem), and delete patient 4 (no problem), to
insert a new line for patient 1, who we know is already scheduled for an office visit
involving this specialty.

33

………..……………………………………………………

Since the line will be inserted, the transaction error rule that prevents the
database from being updated should be executed. Let's try it...

34

………..……………………………………………………

It was indeed fired. And the office visit remained unchanged. No update was made
to the database.

35

………..……………………………………………………

If we now choose to give the last number to a patient who is not included in the
office visit (for example 1, who is not there... and we change 4 to 3, which should
not cause any problems)... that is, we change the office to 3, choose patient 1 to
change their number, and change 4 to 3.

Why would it let us update successfully if patient 1 does not exist in the office
visit?

36

………..……………………………………………………

Let's look at the code. The problem is that GetByKey did not find an item for
patient 1 in the line collection, so this variable will not be able to update the line
because it will not be pointing anywhere. The other operations did not find any
problems.

37

………..……………………………………………………

If now, to update the first patient we give that of an existing line, for which we also
want to delete, but we make a mistake with the new one, and choose one that
does not exist...

38

………..……………………………………………………

In this way, for example, we ask to give the last number to patient 3, delete
patient 2 and replace it with 25...

39

………..……………………………………………………

...changing the office to 2, for example... well, we get the referential integrity error
of the patient.

40

………..……………………………………………………

What if we made a mistake the other way around, with the one we want to
delete? It allowed us to update! Why? Let's see what it did.

41

………..……………………………………………………

It increased the Last Number by 1. OK. Assigned it to patient 3, fine. But left
patient 2 as it was, and added 4, with 0 for the number.
Let's see it in GeneXus...

42

………..……………………………………………………

This will give us 0, because it won't find the item with key 25 in the collection. And
this Remove operation will not remove the line for this key, because it does not
exist. So the new will be performed successfully but with value 0.

43

………..……………………………………………………

We could improve things a bit, asking for the result of the remove operation. And
add the line only if it was successful.

44

………..……………………………………………………

Last notes: here we have the office visit on Thursday 17, for physician 1 on shift 1
in office 2. Let's add an office visit with another physician for the same date and
shift but in office 3. If now we want to change the first office visit, that of physician
1, to office 3, which is now busy....

45

………..……………………………………………………

...the update will fail due to a duplicate candidate key.

46

………..……………………………………………………

And if we want to change the office to a nonexistent one, the referential integrity
check will fail.

47

………..……………………………………………………

And of course, if there is no record with this primary key, no matter what values
we enter in these variables, when we try to update, we will get this error because
the Load was not successful.

48

………..……………………………………………………

&officeVisit.OfficeId

In summary: to update through the transaction, the value of the primary key is
sent to it and there the values of the header and line attributes are brought from
the database to the screen.
To do it through the BC, the Load method is applied to load the elements of the BC
structure. So the attributes on the screen and the lines are like the elements of the
BC and the items of the collection.
The user can change those attributes of the header that can be modified, and the
developer does the same with the BC through the variable, by accessing the
element: BC variable, period, element name (for example, OfficeId).

In the transaction, the user can change some data of a line directly by clicking on
that line and editing the desired field.
To do this with the BC, you must first access the line by code; that is, the item in
the collection. To do so, there is the GetByKey method that can only be applied to
the BC element that is a collection of lines. Here it is &officeVisit, period, Patient.
Unlike the transaction, where we can see the line and its values, here we have to
retrieve it, starting from its identifier. If there is an item with that ID in the
collection, then we will perfectly retrieve the memory location of the item (and it
will be convenient, surely, to assign it to a variable of the BC data type of the line,
to work more comfortably). There we modify the elements of the item/line that
we are interested in. It could be the PatientOfficeVisitNumber.
But what if the ID that we specify for the GetByKey does not exist? The
&officeVisitPatient variable will not be pointing to the position of the line. If it had
not been used before or had been assigned a new, then it will be empty, and the
change made to the PatientOfficeVisitNumber will have no effect on the original
BC.

49

………..……………………………………………………

If we want to remove a line from the transaction, we identify it and mark it like this. In the BC we have
the RemoveByKey method of the items collection. Again, if we pass an item ID that is not in the
collection, it will not be able to do anything on that line that we wanted to delete. Everything will
remain unchanged. This method has the advantage of returning True or False based on whether it
finds the item.

And if we want to add a new line to the transaction, we do it directly using one of the empty lines
provided by the grid.
In the BC, we will have to create the memory space for the item, with a variable of the data type of the
lines. Also, by assigning it the new, complete its elements, and use the Add method of the collection of
items. That’s how we add this memory space to the collection.

So far, either by handling the transaction or the BC variable, we have worked in memory. For all this to
impact on the database, the order must be given. In the transaction, it is done with the Confirm button
(since it is in Update mode, it will try to update). In the BC, we do it with the Update method (we could
also use the Save method, but we are not going to see it here). As a result, the corresponding rules,
events and transaction checks will be executed. That is, in the BC all those that do not depend on the
interface (and are not qualified to run only on the web, through the environment attributes that we
had seen in the previous video).

In short, when working with the BC we have to be more careful because we don't see the existing lines
and we can make mistakes in this programming. Then we will discuss a simpler way to insert or modify
lines (but not to delete them), which is to handle them through a Data Provider.

49

………..……………………………………………………

&officeVisitPatient =

In the transaction, the user can modify some data of a line directly by clicking on
that line and editing the desired field.
To do this with the BC, you must first access the line by code, that is, the item in
the collection. To do so, there is the GetByKey method that can only be applied to
the BC element that is a collection of lines. Here it is &officeVisit, period, Patient.
Unlike the transaction, where we can see the line and its values, here we have to
retrieve it, starting from its identifier. If there is an item with that ID in the
collection, then we will perfectly retrieve the memory location of the item (and it
will be convenient, surely, to assign it to a variable of the BC data type of the line,
to work more comfortably). There we modify the elements of the item/line that
we are interested in. It could be the PatientOfficeVisitNumber.

But what if the ID that we specify for the GetByKey does not exist? The
&officeVisitPatient variable will not be pointing to the position of the line. If it had
not been used before or had been assigned a new, then it will be empty, and the
change made to the PatientOfficeVisitNumber will have no effect on the original
BC.

50

………..……………………………………………………

If we want to remove a line from the transaction, we identify it and mark it like
this. In the BC we have the RemoveByKey method of the items collection. Again, if
we pass an item ID that is not in the collection, it will not be able to do anything on
that line that we wanted to delete. Everything will remain unchanged. This
method has the advantage of returning True or False based on whether it finds the
item.

51

………..……………………………………………………

And if we want to add a new line to the transaction, we do it directly by using one
of the empty lines provided by the grid. In the BC, we will have to create the
memory space for the item, with a variable of the data type of the lines. Also, by
assigning it the new, complete its elements, and use the Add method of the
collection of items. That’s how we add this memory space to the collection.

52

………..……………………………………………………

So far, either by handling the transaction or the BC variable, we have worked in
memory. For all this to impact the database, the order must be given. In the
transaction, it is done with the Confirm button (since it is in Update mode, it will
try to update). In the BC, we do it with the Update method (we could also use the
Save method, but we are not going to see it here). As a result, the corresponding
rules, events and transaction checks will be executed. That is, in the BC all those
that do not depend on the interface (and are not qualified to run only on the web,
through the environment attributes that we had seen in the previous video).

In short, when working with the BC we have to be more careful because we don't
see the existing lines and we can make mistakes in this programming. Then we will
discuss a simpler way to insert or modify lines (but not to delete them), which is to
handle them through a Data Provider.

53

………..……………………………………………………

Finally, we want to delete, so we add the button and in the associated event: first
we load the BC variable by primary key—the three variables are displayed here—,
and then we apply the Delete method to the BC. For now, this method does not
return True or False as the Insert and Update do. So to know the result of the
operation we will have to execute the Success method (or its opposite, Fail).

54

………..……………………………………………………

Let's first test the deletion of an office visit that we know exists.
This one. We enter the key values. It deleted it without any problems.

If from another table there were a record referencing the one we wanted to
delete, then the deletion would have failed due to referential integrity. But this is
not the case. In our application at the moment there is no subordinate table to this
one, that is to say, that references it.

55

………..……………………………………………………

And if now we enter a nonexistent office date... it throws this error that is not very
clear because it mentions an update, but actually the Get indicates that it failed
because it could not perform the Load.

56

………..……………………………………………………

We could try the Delete only if the Load was successful.

Of course, it could happen that the Load is successful (because the record exists)
but the Delete fails, for example, because of referential integrity, as we’ve just
said. Or because there is an error rule conditioned to be fired on Delete and with
another condition that is met.

57

………..……………………………………………………

Business ComponentInsert, Update, Delete

Transaction

We have now finished reviewing the relationship between updating through the
transaction and updating by code through the Business Component, with
examples of the three modes.

58

………..……………………………………………………

training.genexus.com

wiki.genexus.com

training.genexus.com/certifications

59

………..……………………………………………………

Checks Error Id Error Description

FK: PhysicianId ForeignKeyNotFound No matching ‘Physician”

PhysicianNotAvailable Physician… already has 2 shifts…

FK: ShiftId ForeignKeyNotFound No matching ‘Shift’

PK: {OfficeVisitDate, PhysicianId, ShitfId} DuplicatePrimaryKey Record already exists

FK: OfficeId ForeignKeyNotFound No matching ‘Office’

CK: {OfficeVisitDate, ShiftId, OfficeId} Office Visit Date, Shift Id, Office Id already exists

FK: PatientId ForeignKeyNotFound No matching ‘Patient’

PK: {OfficeVisitDate, PhysicianId, ShiftId, PatientId} DuplicatePrimaryKey Record already exists

PatientAlreadyScheduledFo
rMedicalSpecialty

There is a pending office visit scheduled…

60

