
Database Update

Business Components: Differences Between Methods

Methods to operate on the database

TrnMode.Insert TrnMode.Udpate TrnMode.Delete

• Load(), Update(), Delete(), Insert()

• Save(), Assignment instead of Load, InsertOrUpdate()

&cityTour.Save() &cityTour.Insert() &cityTour.Update()

Let's go back to the end of the video where one- and two-level
business components were compared and continue.

have been used repeatedly: the Load method to load
existing information into a BC, combined with the Update() or
Delete() methods to update or delete data, and the Insert()
method to insert it.

But other ways can be used. You just have to be clear about the
differences and use cases.

For example, the Save method avoids specifying the operation in
question. It's more like the Confirm button of the transaction. It
will depend on the mode the variable is in, whether it will try to
insert or update data: if it is in Insert mode it will try to Insert, and
if it is in Update mode it will try to update.

For example, every BC variable defined in an object is in Insert
mode, and the same happens when new memory space is
allocated to it with new().

If the variable is loaded with Load(), it immediately goes into
Update mode.
After performing some operation on it, if it is successful, it will be
in Update mode if it was inserted or modified, and in Delete mode
if the Delete() method was applied.

2

Then, in order to know what operation was attempted when this Save was found, we
must know the context of this variable. With the Insert and Update methods, however,
this is not necessary. Regardless of the mode, you want to insert or update information in
the database.

Methods to operate on the database

• Load(), Update(), Delete(), Insert()

• Save(), Assignment instead of Load, InsertOrUpdate()

&cityTour.Load(2)

&cityTour.Save()

CityTourId 2

CityTourName Paris at night

CountryId 2

CountryName France

CityId 1

CityName Paris

CityTourDuration 380

Attraction

&cityTour

CityTourAttractionId 3

CityTourAttractionName Eiffel Tower

CityTourAttractionCountryId 2

CityTourAttractionCountryName France

CityTourAttractionCityId 1

CityTourAttractionCityName Paris

CityTourAttractionDuration 200

CityTourAttractionId 1

CityTourAttractionName Louvre Museum

CityTourAttractionCountryId 2

CityTourAttractionCountryName France

CityTourAttractionCityId 1

CityTourAttractionCityName Paris

CityTourAttractionDuration 120

CityTourId 2

CityTourName Paris, oh la la

CountryId 2

CountryName France

CityId 1

CityName Paris

CityTourDuration 380

Attraction

This example will make it quite clear.

Note that after the Load operation, if there is a city tour 2 the variable
will load the information from the database and will be in Update
mode, so the Save will want to update. It will only update the
elements that are different, in this case, CityTourName.

3

CityTourId

CityTourName

CountryId

CountryName

CityId

CityName

CityTourDuration

Attraction

CityTourId 2

CityTourName Paris, oh la la

CountryId

CountryName

CityId

CityName

CityTourDuration

Attraction

Methods to operate on the database

• Load(), Update(), Delete(), Insert()

• Save(), Assignment instead of Load, InsertOrUpdate()

&cityTour.CityTourId = 2

&cityTour.Update()

&cityTour.Load(2)

&cityTour.Save()

&cityTour.CityTourId = 2

&cityTour.Save()

&cityTour
&cityTour_aux

Paris, oh la la

But what would happen if instead of using the Load method, a
value was directly assigned to the primary key?
It will depend on the mode of the variable. If it was not in
Update mode, for example because it was only defined in the
object and this is the first thing done with it, then the Save
operation will try to insert a city tour 2, which will fail because
of a duplicate primary key.

However, if the Update method is used instead of the Save
method, there will be no problem. At first glance it might seem
so, because the &cityTour variable will have only two non-
empty elements. The two lines we know CityTour 2 has are not
even there. We can then think that this will make a mess in the
database by running the Update operation.
However, Update is a smart operation, and it knows that since
the variable is in Insert mode, that means that it have all
the data loaded (because if a Load operation had been
executed, the variable would be in Update and not Insert
mode); so, in the database it should only change the data
actually assigned in the BC and no other.
Internally, it loads the data into an auxiliary BC variable, which
of course remains in Update mode. It changes the data that has
been modified in the variable that is in Insert mode in this
case, only the CityTourName , and performs a Save() operation;
since the auxiliary variable is in Update mode because it has
been loaded... it performs an update.

4

In general, it is not good practice to work in this way, directly assigning the primary key
of the BC variable without performing a Load operation.

CityTourId 2

CityTourName Paris, oh la la

CountryId

CountryName

CityId

CityName

CityTourDuration

Attraction

CityTourId

CityTourName

CountryId

CountryName

CityId

CityName

CityTourDuration

Attraction

CityTourId 5

CityTourName Visit Shanghai

CountryId 3

CountryName China

CityId 2

CityName Shanghai

CityTourDuration 0

Attraction

Methods to operate on the database

• Load(), Update(), Delete(), Insert()

• Save(), Assignment instead of Load, InsertOrUpdate()

&cityTour.CityTourId = 2

&cityTour.Update()

&cityTour.Load(2)

&cityTour.Save()

&cityTour.CityTourId = 2

&cityTour.Save()

&cityTour
&cityTour_aux

&cityTour.Load(5)

CityTourId 2

CityTourName Paris, oh la la

CountryId 3

CountryName China

CityId 2

CityName Shanghai

CityTourDuration 0

Attraction

The reason is that if the variable was in Update mode because, for
example, it had been used before (suppose that it had been loaded
with the city tour 5 that only has a header), then, if you are not
careful, you can leave junk values that come from that previous use.

The assignment is the only way when the Business Component is
loaded in a Data Provider, as you will see below, while studying the
InsertOrUpdate method.

5

CityTourId 2

CityTourName Paris, oh la la

CountryId

CountryName

CityId

CityName

CityTourDuration

Attraction

CityTourId

CityTourName

CountryId

CountryName

CityId

CityName

CityTourDuration

Attraction

CityTourId 5

CityTourName Visit Shanghai

CountryId 3

CountryName China

CityId 2

CityName Shanghai

CityTourDuration 0

Attraction

Methods to operate on the database

• Load(), Update(), Delete(), Insert()

• Save(), Assignment instead of Load, InsertOrUpdate()

&cityTour.CityTourId = 2

&cityTour.Update()

&cityTour
&cityTour_aux

&cityTour = new()

CityTourId 2

CityTourName Paris, oh la la

CountryId 3

CountryName China

CityId 2

CityName Shanghai

CityTourDuration 0

Attraction

CityTourId

CityTourName

CountryId

CountryName

CityId

CityName

CityTourDuration

Attraction

CityTourId 2

CityTourName Paris, oh la la

CountryId

CountryName

CityId

CityName

CityTourDuration

Attraction

If you are going to use the assignment, it is strongly
recommended that you first ask for new memory space for the
variable, so that it is clean and in Insert mode.

The assignment is the only way when the Business Component is
loaded in a Data Provider, as you will see below, while studying
the InsertOrUpdate method.

6

Methods to operate on the database

• Load(), Update(), Delete(), Insert()

• Save(), Assignment instead of Load, InsertOrUpdate()

Parm(in: &cityTour)

If &cityTour.InsertOrUpdate()
Commit

else
Rollback

endif

Insert()
Update()
Delete()

InsertOrUpdate()

FOR A COLLECTION OF BCs TOO!

If not &cityTour.Insert()
for &message in &cityTour.GetMessages()

&cityTour.Update()
endif
endfor

endif
If &cityTour.Sucess

Commit
else

Rollback
endif

This method is used when you don't know if the information
you are handling in the BC exists in the database.

For example, in a procedure data is received in a business
component variable. We have no idea what information will be
loaded in the code. However, we do know that the variable will
be in Insert mode, as it is new to this object, even if it is a
parameter. It doesn't receive the mode it was in the calling
object. It only receives the value of its elements.

So, if you try to make a Save(), it will only be successful if the
BC's primary key is not in the database. Otherwise, it will fail
due to a duplicate key (since the variable will necessarily be in
Insert mode, the Save operation will try to insert). Therefore, if
the object that called the procedure did so to have an update
made, we are in trouble.

The InsertOrUpdate method saves us from having to program
both possibilities ourselves. That is, try to insert, and if that fails
because of a duplicate key, and not something else, then try
the Update. This is exactly what InsertOrUpdate() does.

Also, remember that Insert, Update, Delete, and
InsertOrUpdate can be used on variables of the business
component collection type, which is the other case where this
last method will be very useful.

7

Methods to operate on the database

&cityTours

Insert Update Update

&cityTours.InsertOrUpdate()If &cityTours.InsertOrUpdate()
Commit

else
Rollback

endif

Data Provider Source?

Here is a variable of Business Component collection type,
which could be loaded based on what a Data Provider returns,
or through code, in this same program. In this case, the Data
Provider will return a collection of items of the CityTour
Business Component type and we will want the database to be
impacted by what has been done in each Business
Component of the collection.

It could be that the first item of the collection corresponds to
information to be inserted (in this case, a header and its two
lines); the second item is information to be changed (for
example, only the CityTourName of the header); and the last
one is also information to be changed (in the example, one
line is changed and another one is added).

In this case, the operation will not depend on the mode of
each BC variable, because that mode will be Insert in all cases,
do you see why?
For this reason, you cannot run through the collection and
save (it will only work well for the first element, the one you
want to insert, but it will fail for the others, because it will try
to insert and will find a duplicate key).

The operation should therefore not depend on the mode of
the variable, but on the existence or absence of the primary
key in the database. Here the right method, therefore, is again

8

InsertOrUpdate. When applied to the collection, it will be applied to each item. For the
first one, it will try to insert and it will succeed. For the second one, it will try to insert but
it will find a duplicate key, so it will try to update, and it will succeed, and the same for
the last one.

You can ask for the result of the operation, and if it was successful for the entire
collection, then you can commit; otherwise, you can roll back if you don't want some
records to be changed but not others.

Based on what you have seen here, how would you declare the Data Provider to load the
data as shown?

DP Source

Here it is shown, without going into detail. The Data Provider
returns a collection of the CityTour Business Component data
type. A Collection!

It is assumed that CityTourId is not auto-numbered, and that 2
does not exist. Note that there are 3 CityTour groups, for the
three items in the collection that will be returned. The first one
loads all the header data and the two lines.

The second one assumes that the Insert operation on the first
one has already been done, so for the same CityTour it will try to
change its name.

The third one changes the value of the line of ID 1, and adds the
line of ID 5 (here you don't notice the difference, because the
stored attributes of the Attraction level are only those two). But if
the table had more attributes, they would all appear here (or all
those you want to give value to), while here only those you want
to change.

9

training.genexus.com
wiki.genexus.com

