Database Update

Business Components: Differences Between Methods

GeneXus

Methods to operate on the database

* Load(), Update(), Delete(), Insert()

* Save(), Assignment instead of Load, InsertOrUpdate()

&cityTour ... &cityTour ... &cityTour ...
&cityTour.Save() &cityTour.Insert() &cityTour .Update()
TrnMode.Insert TrnMode.Udpate TrnMode.Delete
—I| & | Variables > d &cityTour.Delet

+| & | Standard Variables our.Load(2) XcityTour.Delete()
Attracionld d i r.Insert()
’attractlon CityTour.Attraction

+ atyrour N—
r = new()

Let's go back to the end of the video where one- and two-level business
components were compared and continue.

“Methods have been used repeatedly: the Load method to load existing
information into a BC, combined with the Update() or Delete() methods
to update or delete data, and the Insert() method to insert it.

But other ways can be used. You just have to be clear about the
differences and use cases.

For example, the Save method avoids specifying the operation in
question. It's more like the Confirm button of the transaction. It will
depend on the mode the variable is in, whether it will try to insert or
update data: if it is in Insert mode it will try to Insert, and if it is in
Update mode it will try to update.

For example, every BC variable defined in an object is in Insert mode,
and the same happens when new memory space is allocated to it with
new().

If the variable is loaded with Load(), it immediately goes into Update
mode.

After performing some operation on it, if it is successful, it will be in
Update mode if it was inserted or modified, and in Delete mode if the
Delete() method was applied.

Then, in order to know what operation was attempted when this Save was found, we
must know the context of this variable. With the Insert and Update methods, however,
this is not necessary. Regardless of the mode, you want to insert or update information in
the database.”

Methods to operate on the database

* Load(), Update(), Delete(), Insert()

+ Save(), Assignment instead of Load, InsertOrUpdate()

&cityTour.Load(2)
&cityTour.CityTourName = “Paris, oh lala”

&c;| tyTour . Save()

&cityTour | CityTourld _

City TourName Paris, oh lala CityTourAttractionld I ‘ CityTourAttractionid

[Countryld [City TourAttractionName [& ‘ City TourAttractionName
CountryName CitvTouritmcioncauntyid | ‘ CityTourAttractionCountiyld
Cityld [[ity TourAttractionCountryName | ‘ * [cityTourAttractionCountryName. |

[CityName | City TourAttractionCityld ‘ [City TourAttractionCityld [
City TourDuration City TourAttractionCity Name | | City TourAttractionCityMame
Attraction > City TourAttractionDuration | ‘ City TourAttractionDuration

This example will make it quite clear.

Note that after the Load operation, if there is a city tour 2 the variable
will load the information from the database and will be in Update mode,
so the Save will want to update. It will only update the elements that are
different, in this case, CityTourName.

Methods to operate on the database

* Load(), Update(), Delete(), Insert()

* Save(), Assignment instead of Load, InsertOrUpdate()

&cityTour.Load(2) &cityTour.CityTourld= 2 &cityTour CityTourld = 2 _
&cityTour.CityTourName = “Paris, oh lala” &cityTour.CityTourName = “Paris, oh lala” &cityTour.CityTourName = “Paris, oh lala
é(-mtyTour Save() &cityTour.Save() &cityTour.Update() /

&cityTour | Cuytousd &cityTour_aux

CityTourName Paris. ohlala CtyTourld

Countryld CatyTourName Paris;ohla la City TourAttractionid CityTourAttractionid

(TourAttractionNarme CayTourAttractionName
CountryName t

CountryName
Cityld

CityName

City TourDuration CayTourDuration CryTourAttractionCityName CityTourAttrac

Attraction

But what would happen if instead of using the Load method, a value
was directly assigned to the primary key?

It will depend on the mode of the variable. If it was not in Update mode,
for example because it was only defined in the object and this is the
first thing done with it, then the Save operation will try to insert a city
tour 2, which will fail because of a duplicate primary key.

However, if the Update method is used instead of the Save method,
there will be no problem. At first glance it might seem so, because the
&cityTour variable will have only two non-empty elements. The two lines
we know CityTour 2 has are not even there. We can then think that this
will make a mess in the database by running the Update operation.
However, Update is a smart operation, and it knows that since the
variable is in Insert mode, that means that it doesn’t have all the data
loaded (because if a Load operation had been executed, the variable
would be in Update and not Insert mode); so, in the database it should
only change the data actually assigned in the BC and no other.
Internally, it loads the data into an auxiliary BC variable, which of course
remains in Update mode. It changes the data that has been modified in
the variable that is in Insert mode -in this case, only the CityTourName-,
and performs a Save() operation; since the auxiliary variable is in Update
mode because it has been loaded... it performs an update.

In general, it is not good practice to work in this way, directly assigning
the primary key of the BC variable without performing a Load operation.

Methods to operate on the database

* Load(), Update(), Delete(), Insert()

* Save(), Assignment instead of Load, InsertOrUpdate()
&cityTour.Load(5)

&cityTour.Load(2) &cityTour.CityTourld= 2 &cityTour CityTour Id=2 _
&cityTour.CityTourName = “Paris, oh lala” &cityTour.CityTourName = “Paris, oh lala” &cityTour CityTourName = “Paris, oh lala
&cityTour.Save() &cityTour.Save() &cityTour Update() «/
&cityTour_aux

&cityTour CityTourld | 2 |

City TourName Paris, ohlala | CyTourid | |

Countryld | CryTourName | | | cuyTouratractionid | [CryTouuractionid

CountryName Countryld | | CryTourAttractionName | | CtyTourAttractionName

1 1 CountryName | | [CryTourAttractionCountryid | | ¢ tyTourAttractionCountryld |

Cityld | | [cayid [CryTowAtractonCountryName. | = | cayrowAractionCountryame |

CityName | CryName [| [CryTouAttractionCityld | | CatyTouwrAttractionCtyld

City TourDuration CryTourDuration | | [CiyTourAttractionCityName | | | CtyTourAttractionCityName

Attraction Attraction | > CiyTourAttractionDuration | CtyTourAttractionDuration

The reason is that if the variable was in Update mode because, for
example, it had been used before (suppose that it had been loaded with
the city tour 5 that only has a header), then, if you are not careful, you
can leave junk values that come from that previous use.

The assignment is the only way when the Business Component is
loaded in a Data Provider, as you will see below, while studying the
InsertOrUpdate method.

Methods to operate on the database

* Load(), Update(), Delete(), Insert()

* Save(), Assignment instead of Load, InsertOrUpdate()

&cityTour

CityTourld
CityTourName

Countryld

&cityTour_aux

Paris ohlala CityTourld

CatyTourName

CountryName
Cityld

CityName

CityTourDuration

Attraction

Countryld
CountryName
Cryld
CtyName
CityTourDuration

Attraction

City TourAttractionid

CiyTourAttractionName

CityTouAttractionCountryid

CiyTowAttractionCountryName

CryTourAttractionCityld

CryTourAttractionCityName

&cityTour = new()

&cityTour.CityTourld= 2
&cityTour.CityTourName = “Paris, oh lala

é(.Cl tyTour.Update() «/°

CityTourAttractionid

[CayTourAttractionName
CityTourAttractionCountryld

[CayTowAtractionCountryName. |
CatyTourAttractionCityid

[CayTouAtractionCryName

tyTourAttractionDuration

If you are going to use the assignment, it is strongly recommended that
you first ask for new memory space for the variable, so that it is clean

and in Insert mode.

The assignment is the only way when the Business Component is
loaded in a Data Provider, as you will see below, while studying the

InsertOrUpdate method.

Methods to operate on the database

* Load(), Update(), Delete(), Insert()

* Save(), Assignment instead of Load, InsertOrUpdate() |

FOR A COLLECTIONOF BCs TOO!

Parm(in: &cityTour)

. J
If &cityTour.InsertOrUpdate() If not &cityTour.Insert()
Commit for &message in &cityTour.GetMessages()
else if &message.ld = “DuplicatePrimaryKey”
Rollback &cityTour.Update()
endif endif
endfor

endif

If &cityTour.Sucess
Commit

else
Rollback

endif

This method is used when you don't know if the information you are
handling in the BC exists in the database.

For example, in a procedure data is received in a business component
variable. We have no idea what information will be loaded in the code.
However, we do know that the variable will be in Insert mode, as it is
new to this object, even if it is a parameter. It doesn't receive the mode
it was in the calling object. It only receives the value of its elements.

So, if you try to make a Save(), it will only be successful if the BC's
primary key is not in the database. Otherwise, it will fail due to a
duplicate key (since the variable will necessarily be in Insert mode, the
Save operation will try to insert). Therefore, if the object that called the
procedure did so to have an update made, we are in trouble.

The InsertOrUpdate method saves us from having to program both
possibilities ourselves. That is, try to insert, and if that fails because of a
duplicate key, and not something else, then try the Update. This is
exactly what InsertOrUpdate() does.

Also, remember that Insert, Update, Delete, and InsertOrUpdate can be
used on variables of the business component collection type, which is
the other case where this last method will be very useful.

Methods to operate on the database

&cityTours
Insert Update Update
&cityTours = GetCityTours(...) ——— Data Provider Source?

If &cityTours.InsertOrUpdate()
Commit
Rollback

endif

Here is a variable of Business Component collection type, which could
be loaded based on what a Data Provider returns, or through code, in
this same program. In this case, the Data Provider will return a
collection of items of the CityTour Business Component type and we
will want the database to be impacted by what has been done in each
Business Component of the collection.

It could be that the first item of the collection corresponds to
information to be inserted (in this case, a header and its two lines); the
second item is information to be changed (for example, only the
CityTourName of the header); and the last one is also information to be
changed (in the example, one line is changed and another one is
added).

In this case, the operation will not depend on the mode of each BC
variable, because that mode will be Insert in all cases, do you see why?
For this reason, you cannot run through the collection and save (it will
only work well for the first element, the one you want to insert, but it will
fail for the others, because it will try to insert and will find a duplicate
key).

The operation should therefore not depend on the mode of the variable,
but on the existence or absence of the primary key in the database.
Here the right method, therefore, is again InsertOrUpdate. When
applied to the collection, it will be applied to each item. For the first
one, it will try to insert and it will succeed. For the second one, it will try

to insert but it will find a duplicate key, so it will try to update, and it will succeed, and the
same for the last one.

You can ask for the result of the operation, and if it was successful for the entire
collection, then you can commit; otherwise, you can roll back if you don't want some
records to be changed but not others.

Based on what you have seen here, how would you declare the Data Provider to load the
data as shown?

DP Source

Rules | Variables

CityTour

{
CityTourld = 2
CityTourName = Paris at night
CountryId = find(CountryId, CountryName = "France")
Cityld = find(Cityld, CityName = "Paris")
Attraction

It
{

> [M&]

CityTourAttractionld = 3
CityTourAttractionDuration = 260

)

}
Attraction

(
{

Infer Structure No] CityTourAttractionld = 5
Output CityTour ! CityTourAttractionDuration = 120
}
Collection True }
CityTour
Collection Name GetCityTours {
CityTourId = 2

CityTourName = "Paris, oh la la"

)
)
CityTour
40
CityTourld = 1

Attraction

(
1

CityTourAttractionld = 1
CityTourAttractionDuration = 150

3
}

Attraction

{
CityTourAttractionld = 5
CityTourAttractionDuration = 120

Here it is shown, without going into detail. The Data Provider returns a
collection of the CityTour Business Component data type. A Collection!

It is assumed that CityTourld is not auto-numbered, and that 2 does not
exist. Note that there are 3 CityTour groups, for the three items in the
collection that will be returned. The first one loads all the header data
and the two lines.

The second one assumes that the Insert operation on the first one has
already been done, so for the same CityTour it will try to change its
name.

The third one changes the value of the line of ID 1, and adds the line of
ID 5 (here you don't notice the difference, because the stored attributes
of the Attraction level are only those two). But if the table had more
attributes, they would all appear here (or all those you want to give
value to), while here only those you want to change.

More...

Of course, there is much more to consider about using Business
Components.
We encourage you to keep exploring.

GeneXus

training.genexus.com
wiki.genexus.com

training.genexus.com/certifications

"

