
Web Screens

Base tables and navigation in web panel with multiple grids

Web Panel with SEVERAL Grids

But, what happens when a web panel has more than one grid? In that

rather that of each grid.

The definition of navigations will depend on whether the grids are parallel
or nested.

Consider the case of parallel grids in the first place: each grid will
determine its own navigation independently from the other. So, it is
possible that a base table exist for one grid and not for another grid.

In this example, both grids will have base table, because, clearly, you can
see attributes in each of them, and that is enough to confirm that there
will be an implicit navigation in each grid.

And the question is: how do we determine the base table for each of
them?

Start by noting that this example differs from the previous one only in the
fact that you have added the grid on the right and a variable to filter the
data in that grid and another one to show a total.

It is a known fact that, in addition to the generic Refresh event of the

disappears. Now you have specific Refresh event and Load event for each
grid. Each Load event will be triggered only once or N times depending on

whether GeneXus finds a base table for that grid or not.

It is easy to infer that the base table of the first grid will be Attraction, and
the base table for the second grid will be CountryCity, and in both cases
the filtering will be by CountryId, an attribute received by parameter
which, as usual, will not take part in the definition of base tables at all. It
will be part of what follows such definition.

However, you could think that, since both tables are related in the
database (note that, in fact, CountryCity is part of the extended table of
Attraction, so, for each attraction loaded on this grid, there will be an

for each city loaded in this other one, there will be N related attractions).
As mentioned, you could think that this relation will have an effect on what
is loaded into the grids, but it actually will not. GeneXus will not define any
implied relation between them.

All the attractions in the country received by parameter will be loaded in
the first grid, and all the cities in that country will be loaded in the second
grid.
With this possible confusion now cleared, focus now on how GeneXus
defines the base table for each grid.

• Attributes in the grid (visible or
hidden)

• Grid Base Trn property

• Grid Order property

• Grid Conditions property

• Grid Unique property

• Grid Data Selector property

• Attributes in the Load
event
(without context, ie: For each
command and inline aggregate
formula)

Take the first one in line.

as for the case of a single grid (the Base Transaction, obviously, and
properties: Order, Conditions, Unique, and Data Selector). Unlike in

considered here. Only the Load event of the grid will be. So, in the case
that a separate attribute existed in the Refresh event, it would not be
participating.

• Attributes in the grid (visible or
hidden)

• Grid Base Trn property

• Grid Order property

• Grid Conditions property

• Grid Unique property

• Grid Data Selector property

• Attributes in the Load
event
(without context, ie: For each
command and inline aggregate
formula)

And the same goes for any other event. Like these others.

• Attributes in the grid (visible or
hidden)

• Grid Base Trn property

• Grid Order property

• Grid Conditions property

• Grid Unique property

• Grid Data Selector property

• Attributes in the Load
event
(without context, ie: For each
command and inline aggregate
formula)

+ fixed-part attributes

In addition, for the case of the first grid -and only for it- if attributes exist in
the fixed part, as is the case, these attributes will also be considered for
determining the base table. And only for it. In the case of all the other
grids none of the attributes of the fixed part will participate.

So, in our case, in determining the base table of Grid1 all these grid

It is clear why there will be base table, which is Attraction. If any of these

warned in the navigation list.

• Attributes in the grid (visible or
hidden)

• Grid Base Trn property

• Grid Order property

• Grid Conditions property

• Grid Unique property

• Grid Data Selector property

• Attributes in the Load
event
(without context, ie: For each
command and inline aggregate
formula)

Additionally, in order to determine the base table of Grid2, the ones

the Load.

considered.
We can clearly see why the base table is CountryCity. In this case, the
CountryName

• Attributes in the grid (visible or
hidden)

• Grid Base Trn property

• Grid Order property

• Grid Conditions property

• Grid Unique property

• Grid Data Selector property

• Attributes in the Load
event
(without context, ie: For each
command and inline aggregate
formula)

But what happens with the attributes that appear in these other events?
They must just belong to the extended table of any of the grid base tables.
Otherwise, we will informed in the navigation list.

In this case, we have CountryName and AttractionId.

Like we said, for parallel grids, navigations are not related automatically.

If, for example, when the user clicks on a line of the grid that shows cities,
we wanted the grid that shows tourist attractions to only show those in
that city, as we can see here, how could we do this?

There are several ways to go about it. We will show the one implemented
here.
Following a Save of our panel, we set the AllowSelection property for the
cities grid to allow the selection of a line through a click on any part of it.
We can make it appear with a different color, or not.

OnlineActivate event, for a line to be triggered
when the user selects it, with the possibility of assigning the city identifier
of the line selected to a variable.

Then we refresh the attractions grid, because we added a new condition:
that only the attractions whose city matches that of the &CityId variable
be loaded, to the extent that the latter is not empty.

This will achieve the behavior shown in runtime.

The other alternative is to directly show the attractions for each city in the
country received by parameter. This means using nested grids, like we did
here.

We are well aware that having nested grids is similar to having nested For
eachs, so the way to define their base tables and resulting navigations will
be analogous.

If you program this object as listed, you would have the external For each
navigating the CountryCity table, which will have an implied filter by
CountryId, so it will go over all the cities in that country, and for each of
them it will print its name; and prior to moving on the next one it will
execute the internal For each, which will go over the Attraction table,
filtering implicitly by country and city, and printing each attraction in that
country and city.

This is the navigation that you will achieve in your web panel, but, like
always, there are two options: implementing each grid with, or without
base table.

When you implement both grids with base table, which is the way to work
less, you will be establishing the Country.City base transaction for the first
grid, and Attraction for the second one.

Grid1.Refresh()

Grid1.Load()

Grid2.Refresh()

Grid2.Load()

Grid2.Load()

Grid2.Refresh()

Grid1.Load()

Paris

Nice

Eiffel Tower

Louvre Museum

Grid2.Load() Matisse Museum

For any case, the Refresh event of Grid1, the external one, will take place

whether the grid has its base table or not.

In this case, since two cities (Paris and Nice) have been entered for France,

after, and prior to executing the Load again to load Nice, the Refresh
event of the nested grid will take place. And its Load event will come
immediately after, once or N times, depending on whether it has base
table or not. It does have base table in this case, so a Load will be
triggered to load the Eiffel Tower and another one to load the Louvre
Museum.

Once the load of the nested grid is concluded, it will move on to load the
following city, Nice. And it will be the same, triggering the Refresh event
of the nested grid once, to then trigger the Load event N times for loading
the new attractions, in Nice, which in this example is just one.

Here, the variables are added to the screen to complete the rest you had
previously. This will make the example identical, with the need for
programming all the events in the system.

For each Country.City

where CountryId = @CountryId

For each Attraction order AttractionName

where CountryId = @CountryId

where CityId = @CityId

Load

Load

endfor

endfor

Translating this into a GeneXus pseudo-code would result in something
like this.

variable that will count the total number of attractions that will be loaded.
Then, and because this is the case of a grid with the CountryCity base
table, GeneXus will establish the implicit For each that will navigate this
table, filtering by the value of CountryId received by parameter. For each

attractions, which it will add to the variable that will be totalized. Then the
city is loaded on the grid, from the Load command that GeneXus includes.

Immediately after, the Refresh of the nested grid is executed, leaving in
zero the value of the total sum of trips that include that attractions that are
loaded afterwards. And because it has base table, GeneXus writes another
implicit For each to navigate that base table Attraction to which it adds
all the corresponding clauses, according to what the developer made

transaction and order clause.
Additionally, it adds the implicit conditions that precisely relate to the fact
that this grid is nested with another one, and a relation between the table
exists. For this reason, it will only go through the records of the attractions

table that match the country and city of the record loaded in the external
For each. And for each of them, it will execute the Load of this nested
grid. And then it will load the line on the grid.

For each Attraction order AttractionName

where CountryId = @CountryId

where CityId = @CityId

Load

endfor

Of course, if the first grid had no base table, then the implicit For each
disappears, as well as the Load command.

For each Attraction order AttractionName

where CountryId = @CountryId

where CityId = @CityId

Load

endfor

because the grids are nested, GeneXus will immediately trigger the
Refresh and Load events of the nested grid. And depending, again, on
whether the nested grid has base table or not, GeneXus will either
establish an implicit For each and its Load or not. Except that in this case,
you will have to the explicit the Where of cities, which was implicit before,
as you will see next.

For each Attraction order AttractionName

where CountryId = @CountryId

where CityId = @CityId

Load

Load

If you wanted that the nested grid not have base table, it is clear that you
would substitute attributes by variables in the grid, and you will have to
program the For each explicitly in the Load event, as well as in the Load
command.

And precisely because there are not base tables, leaving the logic for
loading grids fully up to the developer, GeneXus may not establish the
automatic join between the For eachs, and for this reason you need to
explicit the filters.

You will be establish only the filter by CityName, because the filter by
CountryId will be carried out due to the parameter.

Here, it is implemented in GeneXus.

If you take a look at its navigation list, you will clearly see that it did not
select base table for any of the two grids.

that had base tables for both grids.

?

?

Base Tables

But to reach this navigations, you had to determine the base tables in the
first place, just as it occurs with the For eachs.

In order to determine the base table of the first grid on screen, the exact
same thing that you saw for parallel grids will apply.
That is to say that, GeneXus takes into account the attributes of the grid
itself, plus those corresponding to the fixed part of the screen. In addition,

transaction, Order, etc.) and those of the Load event for the grid. But
neither those of the Refresh of the grid, nor those of any other event.

When a base transaction has been specified, it will have that base table,
and all the attributes mentioned will have to belong to its extended table.

Base table

If no base transaction has been specified, then GeneXus will find the
minimum extended table containing all the attributes mentioned and will

The base table of the nested grid is determined as if the grid were parallel
and not nested, except that it will be the same as for determining the base
table of a nested For each.

When the nested grid HAS NO BASE TRANSACTION SPECIFIED, then
GeneXus will determine it on its own, and here is where the fact that this
grid is nested with another one may determine a table different from the
one that would be determined if the grid were parallel.

Attraction

? Attraction!

For instance, if the grids were inverted and the external grid navigated the
Attraction table, with no base transaction specified in the internal grid,
with only the CityName attribute implied, and the grid being parallel, then
it is clear that GeneXus would determine the cities table as its base table.
However, in this case, and because it is nested with a grid that has an
extended table that includes the attributes of the second grid, it will select
for this second grid the same base table as that of the first grid, thus
implementing a control break.

Base tables: ready!

And its navigations!

And this concludes the study of determining base tables and navigations
for all cases of web panels.

training.genexus.com
wiki.genexus.com

