Unit Test. Introduction.

GeneXus

When we develop a new functionality in our app, we must test what we develop to
verify that is functions as expected. It is also important to test the whole
application again after that change to ensure that what was already functioning
continues to behave correctly.

As the app grows, these tasks may become increasingly tedious because we must
test over and over again. There is also a higher cost of testing because more time
becomes necessary each time.

UlTest & Unit Test

New Object
Select a Category: Select a Type:
Common =52 Color Palette & Structured Data Type
Workflow g Data Provider 2\ Subtype Group
Reporting =] Data Selector i
\S)Vc;t;umentatmn %Data View 2. Ui Test :
Extensibility Domain
Deploy X| External Object
Chatbots 2a]image
Smart Devices =2 Language
~¥ Procedure
= stencil

GeneXus aids us with this by providing us with functionalities to create
and execute automatic tests, both unit tests and interface tests that will
reduce part of the manual work required for verification.

Unit tests enable us to test one part of the app in an isolated manner. This
applies to tests for procedures, DataProviders, and BusinessComponents.
In sum, all those components where the business logic of our app lies.

The Interface tests allows us to create tests by simulating the actions of a
user on the browser, so as to test full flows in the app.

Unit Tests - Example

L= Discount X

Source| Layout I:l Conditions | Variables | Help | Documentation

1Lparm(in:&Price, in:&Percentage, out:&DiscountedPrice);
28
3

We will be focusing on unit tests, and we will do it with a very basic
example.

We have a procedure that calculates a Discount - it basically applies a
discount percentage to a price - which will be used for calculating
promotions at the travel agency.

The procedure has two input parameters: the Price to be discounted, and
the discount percentage. And it has an output parameter that is the
discounted price.

What this procedure would do, for example, is, when we pass a price of
$100 and a discount of 10%, it will return the discounted price of $90.

u

nit Tests - Example

L ® Discount X

I:I Layout‘ Rules | Conditions | Variables ‘ Help | Documentation ‘

v ‘

/*

Apply a &Percentage % discount over &Price.
Ej 1% discount over $100 is $96.

*/

LV

&DiscountedPrice = &Price * (18@-&Percentage)/100

Here we will see how the procedure is implemented.

So, how could we test the functioning of this procedure as we expect it to
function? That is, upon a given price and a percentage, it must return the
correct adjusted price.

We could build a screen to enter values of price and discount, with a
button calling the procedure and showing the value of the discounted
price on screen. And we could test in an interactive manner that the
procedure behaves as expected. We could also program a procedure
called proc Discount with different parameters to start printing the results
on the console, so as to verify that there the result is what we expect.

But that testing method is costly, because we must create a screen, enter
the values manually and evaluate results. And we would be doing this on
the computer that we use for developing. But later, when we are satisfied
with the behavior, after sharing our work with the rest of the team, we
must go on testing to verify that what we shared was well integrated.

The idea behind unit tests is to have the possibility of automating these
tasks to avoid doing repeated work and to simplify the task.

#* o
Sm
9
o

Close
Close All But This

| Full Screen

2s | Help | Documentation ‘

ik

| Open V|

»
Open Part scount over &Price.
X Delete e is $9@.

Save As...

51
ﬁu

1 References

¥ e * (188-&Percentage)/169|

Team Development 4
@ Properties

Locate in KB Explorer

Build With This Only

Set As Startup Object
B view Last Navigation
B View Navigation
& Export

Select Left Side To Compare
Outy 4 Create Unit Test

So, let’s create a unit test for our procedure. To do that we right click on
the object and we select the “Create Unit Test” option.

Objects

» <Object>UnitTest
e <Object>UnitTestSDT

» <Object>UnitTestData

When we create the unit test, three objects will be created. Let’s see them
in detail ...

<Object>UnitTestSDT

o Discount X D Navigation View X gL DiscountUnitTestSDT X %5 DiscountUnilTesiData X A DiscountUnifTest X

| | Documentation
Name Type Description Is Collection

& DiscountUnitTestSDT o
Price Price O
Percentage Percentage U
ExpectedDiscountedPrice Price
ErrorMsgDiscountedPrice VarChar(100) Error message to show in case assertion... O

%~ Discount X

Source ‘ Layout |:| Conditions | Variables | Help ‘ Documentation

l=aparm(in:&Price, in:&Percentage, out:&iscountedPrice);
2
3

As mentioned, if we were to test this manually, we might have created a
screen with the two input variables for the procedure and some way to
view results of the output variable. In sum, a way of validating that upon
the input values, we will get back an expected result.

We will see the DiscountUnitTestSDT, which is one of the objects created
automatically when the unit test of the Discount procedure was created.
This SDT defines the structure of a specific test case for the object we are
testing.

We can see that, as we would do ourselves, it defines the two input
variables, with the same name as the procedure’s parameters, and it also
defines a variable called ExpectedDiscountedPrice where we will be able
to define the value of the result we expect to have.

We will actually be able to say that, for a price of 100, and a discount
percentage of 10 we expect the result to be 90.

We can also assign a message stating that, for the case where the result is
different from 90, we want it to be shown.

.» Discount X A DiscountUnitTest X $5 DiscountUnitTesiData X

|:| Rules ‘ Variables ‘ Help | Documentation |

1. DiscountUnitTestSDT

2eq

3 Price = ©

4 Percentage = @

5 ExpectedDiscountedPrice = @

6 ErrorMsgDiscountedPrice = ""

T}

8. // Add more rows to test using different data
o}

Now that we saw the structure of the test case for the Discount
procedure, we will see how to define the data sets.

We will do this in the DataProvider that was also defined automatically.
Here we can see a defined group, with the elements of the SDT where we
can instance the values...

.& Discount X A DiscountUnitTest X $#3 DiscountUnitTestDat

[::::::] Rubs|VaHabks|Hem| Docuwmnwﬂon|

¥

// Add more rows to test using different

1 DiscountUnitTestSDT

24

3 Price = 1@@

4 Percentage = 1@

5 ExpectedDiscountedPrice = 9@

6 ErrorMsgDiscountedPrice = "10% OFF
.

8

9

TEZT 7T
Name DiscountUnitTestData
Description Discount Unit Test Data

Expose as Web Service

Main program

False

False

Call protocol Internal
Qualified Name DiscountUnitTestData
Object Visibility Public
Infer Structure No
Output DiscountUnitTestSDT
Collection True

Collection Name

DiscountUnitTestSDTCollection

Connectivity Support

Disabled warnings

Generate Object

Inherit

5pc0096 spc0107 spc0142

True

... and, for example, assign the ones we mentioned before.

We will also assign the message that we want to see for the case of

obtaining a result different from 90.

This data-Provider returns a collection of test data, so it will allow us to
define several tests, or several data sets in a simple manner for us to

execute. But, for the time being, this one will suffice for executing our first

test.

, Discount X A DiscountUnitTest X

l:l Layout‘ Rules ‘ Conditions | Variables | Help ‘ Documentation ‘

/* Autogenerated unit test code for Procedure 'Discount’ */
For &TestCaseData in DiscountUnitTestData()

1
2
3
4 /* Act... */

5 Discount(&TestCaseData.Price, &TestCaseData.Percentage, &DiscountedPrice)
6

7

8

9

0

]

/* Assert... */
AssertNumericEquals(&TestCaseData.ExpectedDiscountedPrice, &DiscountedPrice, &TestCaseData.ErrorMsgDiscountedPrice)
endfor

Before we execute it we will see the third object that was created
automatically, that is, the unit-test in itself.

The DiscountUnitTest object will go over the collection of test cases, and
for each of them it will invoke our procedure and validate whether the
result obtained is the same as the result expected.

This object is a GeneXus procedure that is programmed as such, so we
will see an annotation with which we are quite familiar.

This means that FOR EACH test case in the collection of Tests that we
define in the data Provider, a call is made to the procedure that we are
testing with the input parameters defined in the test case, and a variable
as output value.

The new thing in the unit test is the ASSERT command, which will basically
compare an expected result - defined as part of the test case- against the
result actually obtained. When the expected and the obtained results
match, then the test is deemed successful, and we say that it has PASSED,
or we call it a PASS. When there are differences, the test is failing so we
call it a FAIL, and a report is made indicating that there was an error,
showing an associated message.

Here, we are using the AssertNumericEquals function to validate the result
because the discounted price is numeric, but there is also the possibility
of using AssertBoolEquals to compare Booleans or AssertStringEquals that
enables us to compare texts, and therefore any data type of greater
complexity.

Now that we saw the three objects that were created automatically when
we created our unit test, and after loading the data for our first test case,
we will execute the test by right clicking and selecting the [Run This Test]
option.

E=

w" Discount X A DiscountunitTest X 5 DiscountUnitTestData X [5] Navigation View X

Layout | Rules | Conditions | Variables | Help | Documentation

/* Autogenerated unit test code for Procedure 'Discount’ */
25 For &TestCaseData in DiscountUnitTestData()

/* Act... /
Discount(&TestCaseData.Price, &TestCaseData.Percentage, &DiscountedPrice)
/* Assert... /
AssertNumericEquals(&TestCaseData.ExpectedDiscountedPrice, &DiscountedPrice

g/ endfor
1

B L DiscountUnitTest

. &TestCaseData.

v = s X
Tests list

Name Started at Elapsed
Passed

111835 95 ms|

Execution detail
o DiscountUnitTest

Slarted at- Saturday, February 9, 2019 11:18:35 AM

Clear Results

Result Assertion Type Expected Obtained
NUMERIC 500000 900000 -

© Properies T Toolbox [Tesis Expl_ i= Tests Res

Once the test’s execution is completed, we will see the new window -
called TEST-RESULTS- where we can see that our test was executed
(DiscountUnitTest) and that the result was successful because it is marked

in green.

It also provides us with information of the time of execution for the test.

Below -in the Execution Detail area- we will see a line for each Assert
found in our test. For each one of them we can see the result expected,
the result obtained, and also a green or a red mark depending on whether
the Assert has failed or passed. In the event that the Assert fails, we will

also see the message that we defined in our test case.

.= Discount X

I:l Rules ‘ Variables | Help | Documentation |

1
2
3
4
5
5
1
8
9

10
11
12
13
14
15
16

DiscountUnitTestSDT

{
Price = 1ee
Percentage = 10
ExpectedDiscountedPrice
ErrorMsgDiscountedPrice

}
DiscountUnitTestSDT
{
Price = 9@
Percentage = 15
ExpectedDiscountedPrice
ErrorMsgDiscountedPrice
}

A DiscountUnitTest X 5 DiscountUnitTestData X Navigation View X

20

"18% OFF of $1e@ should be %98 "

76.5

"15% OFF of $9@ should be $76.5 "

// Add more rows to test using different data

Following our first successful test and knowing how simple it is to define a

test case, we will now define other cases in our DataProvider.

The selection of data to be tested implies an important task and a good
opportunity for cooperating with the team'’s tester in defining the tests
that provide us with the best coverage possible.

This time we select any simple case (applying 10% discount to a price of
$100), and now we will add a test to validate that the decimal values are
well managed. So we select numbers that will result in decimal numbers.

Then, we add another group, and now we decide that, upon a given price
of 90 and a discount percentage of 15, the expected price is 76.5. And,
again, we execute our test.

E=

+® Discount X A DiscountUnitTest X #5 DiscountUnilTestData X [Navigation View X = * X
Tests list
Layout | Rules | Conditions | Variables | Help | Documentation el
Name Started al Elapsed
. . Failed (1)
lo/* Autogenerated unit test code for Procedure 'Discount’ */ w3 ntUnitTest 113115 158 ms
For &TestCaseData in DiscountUnitTestData()
/* Act... /
Discount(&TestCaseData.Price, &TestCaseData.Percentage, &DiscountedPrice)
/* Assert... /
AssertNumericEquals(&TestCaseData.ExpectedDiscountedPrice, &DiscountedPrice, &TestCaseData.ErrorMsgDisce
endfor

Execution detail
+ DiscountUnitTest

Started at: Saturday, February 9, 2019 11:31:15 AM
Result Assertion Type Expected Oblained
NUMERIC ~ 900000 900000 -+
¥ 15%OFFof$.. NUMERIC 765000 760000

Clear Results

> © | Propertes T Toolbox (& Tests Expl. := Tests Res

We will see that, now, we will have two Asserts, one for each test case we
execute.

Now we are surprised by the fact that the test is not successful. As we
mentioned, we have two Asserts. The first one corresponds to the first test
case, that turned out to be successful, and the second one corresponds
to the second test case, where the result obtained was 76 instead of 76.5.
This means that our procedure is not considering decimal values.

This is showing us that there is an error in the procedure and that the
variable where the discounted price is calculated is most probably
wrongly defined as a whole number instead of having decimal values.

We can also see here that, in the event that the test fails -meaning that the
Assert does not show a successful result-, we see the message we had
defined in the error case. We will only see this in the event where the
Assert fails. When the test is successful, the message is not shown.

E=

+* Discount X A DiscountUnitTest X D Navigation View X $5 DiscountUnifTestData X

Layout | Rules Conditions | Variables | Help | Dacumentation

15 /* Autogenerated unit test code for Procedure 'Discount’ */

2=For &TestCas

endfor

/* Act...

Discount(&TestCaseData.Price, &TestCa

/* Assert...
AssertNumericEquals(&TestCas

eData in DiscountUnitTestData()

eData.ExpectedDiscountedPrice, &DiscountedPrice

seData.Percentags, &DiscountedPrice

eData.ErrorMsgDisce

= * X
Tests list

Name Started at Elapsed
Passed (1)

H L DiscountUnitTest 11:4626 104 ms|

Execution detail
DiscountUnitTest

Started at: Saturday, February 9, 2019 11:46:26 AM

Result Assertion Type Expected Obtained
NUMERIC ~ 900000 900000 -+
NUMERIC 76.5000 765000 +

Clear Results

> 0| Propertes T Toolbox (G Tests Expl. = Tests Res

If we know that we have a problem in the definition of the output variable
of our procedure, we proceed to editing it. If we see that, in fact, the

variable was left undefined, we now define it correctly based on the Price
domain. After fixing the variable and executing the test again, we will see

that the test now proves successful.

For this example, | introduced a little trick when we defined the unit test.
The data types of the elements in the SDT are defined with the same data
type as that of the procedure to be tested. So if we had not introduced
that trick, the result of the Assert would have been a PASS because both
values would have been whole numbers and the expected result would
also have been 76. Even when this would have been a clue as to the
existence of a problem, when we look at the expected result and the
result obtained, the idea is not for us to discover problems by analyzing
the results of a test that has been marked with green. But | wanted to
show you an simple example. This sort of things could happen in reality if
someone had mistakenly changed the output variable of the Discount
procedure AFTER the test was already created, as it was the case here.

,;\- Discount X A DiscountUnifTest X Navigation View X E DiscountUnitTestData * X

] l:l Rules ‘ Variables | Help ‘ Documentation ‘

2a{

3 Price = 1@

4 Percentage = 10

5 ExpectedDiscountedPrice = 90

& ErrorMsgDiscountedPrice = "18% OFF of $10@ should be $90"

75y

8! DiscountUnitTestSDT2

ah{

10 Price = 9@ N .

11 Percentage = 15 22, DiscountUnitTestSDT2

12 ExpectedDiscountedPrice = 76.5 238 {

13 ErrorMsgDiscountedPrice = "15% OFF of| 24 Price = 1@

la-}) 25 Percentage = 200

157 ?1sc°“ntun1ﬂe5tsm2 26 ExpectedDiscountedPrice =
o . .

19 Price = @ 2:: ErrorMsgDiscountedPrice =
18 Percentage = @ 2810}

19 ExpectedDiscountedPrice = @

20 ErrorMsgDiscountedPrice = "@% OFF from $© Should be @"

21y

We can go on increasing our tests by adding borderline cases. Something
interesting in this testing method is that it facilitates our thinking about
cases. For example, it is clear that, mathematically speaking, a 200%
discount on 100 would be -100. But, ... is this a valid case in our context?
Should our Discount procedure return a negative value, or it should
somehow point out an error?

When we think of test cases, we come up with questions that help us in
improving the definition of requirements, thus making our system more
robust.

Test Explorer

& 7 x
[] SelectiUnselect Al
lut Insert Build Knowledge Manager Window Tools Test| Help —DERootModu\e []
5 4 DiscountUnitTest
OO f)' |“|f"w } |.Net Environment -5 Run All Tests
o & Tests Bxplorer ,)
42 Discount X & DiscountUnitTest X . N DiscountUnitTe
j Tests Results
I:l Rules ‘ Variables ‘ Help | Documentation |
{
13 Price = 9@
11 Percentage = 15
12 ExpectedDiscountedPrice = 76.5
13 ErrorMsgDiscountedPrice = "15% OFF of $9@ should ||

£ Properties T Toolbox [Tests Expl.. := Tests Res

Once we complete the implementation of our procedure and tests, and
we then share -or integrate- our work with the work of the rest of the
team, it is important to take into account that, since unit tests are
GeneXus objects, they will be part of the knowledge base and we will be
sharing them in the same way that we share other objects.

In the TestExplorer we can see all the test objects defined on our KB.
Perhaps we implemented some of them, and others were implemented by
our fellow team-members. And we may execute all of them or we may
choose to execute a selection of them from here, with just one click.

If, in the future, we —or other developers- need to modify the Discount
procedure, we will be more at ease in doing so, because if something is
broken, that is, if the result obtained for the same input parameters differs
from the previous result, then the test will be a Fail, and the problem will
be detected at an early stage.

Unit Tests

* Rapidos
» Repetibles (Regresion)

* Mejoran la Testeabilidad de la aplicacion

Even when we have analyzed a very basic example, we may test all sorts
of procedures, DataProviders and BCs in the same manner. We may carry
out much more complex tests using actual data from our app (either on an
actual database or on a simulated one), thus covering the validation of a
very significant part of our application.

Perhaps, we have the same work in creating the unit test as in creating a
testing procedure that prints out values on the console. However, the
interesting thing here is that the verification is carried out by the test itself
and not by us. The execution of unit test must be fast because we will
want to use them not only to test as we develop the functionality. After
introducing changes we will also want to easily repeat all tests defined in
the KB to verify that we have not broken any other test when we
implemented our functionality. This means that the set of unit tests that
we build for each functionality will be automating part of the regression
tests.

We also saw that when we work this way, it helps us in developing more
robust applications.

| J

https://wiki.genexus.com/commuwiki/servlet/wiki?38353,Ul+Test+Automation

Even though unit tests will allow us to cover an important part of the app,
we are not covering any of the interactions that occur on screen, nor the
full flows of the application.

To that end, we have no other option but to execute the app using its
interface, that is, browsing through the application’s screens as a user
would do.

For automating tests at the interface level, we have the UlTest object -
User-Interface-Test.

These tests are more complex and their implementation and execution
take longer. Therefore the testing pyramid reminds us that most
automated tests in our app should be unit test, because they are faster
and less costly. Then, at the service level, we save the Interface tests only
for the flows that prove critical in our application.

To learn more about the Ul Test, go to
https://wiki.genexus.com/commwiki/servlet/wiki?38353,Ul+Test+Automati
on

GeneXus’

training.genexus.com
wiki.genexus.com

