
Analysis of the Transaction Design Model

Library



Library

Throughout the previous course, we looked at everything we needed to
correctly model a given reality in GeneXus. In this video, through the
analysis of a limited reality, different options are analyzed to design
transactions, using a set of essential resources and solving a series of real
requirements.

Let's suppose that a GeneXus application needs to be designed for
managing the tasks of a library related to the loans of books, magazines,
and notebooks.
It works with Members who can access different reading material, such as
books and magazines, as well as computer equipment loaned by the
Library.

2



Entities

The information to be recorded is as follows:

Country
Each Country is registered with a unique identifier and its name.

Member
Each Library Member is registered with his/her ID card, name, address, photo
and a contact phone number.

Library members must be 20 years of age or older.

Author
Each Author is registered with a unique identifier, name, photo and country
of origin. An Author can have several books published.

3



Entities

Book
Each book is registered with a unique identifier, title, date of publication and
number of copies available in the Library. It can be a Novel, an Essay, a Poetry
book, etc.; therefore, a book belongs to a literary genre.

In addition, a Book has an Author and a Publishing House in charge of its
publication.

Magazine
Each magazine is registered with a unique identifier, title, date of publication,
cover image and the number of copies available.

Notebook
The services include loans of notebooks to its Members, since many
of them are writers and researchers. Each notebook is registered with a
unique identifier, its image, and short description.

In addition, its status (available or checked out) is recorded.

4



Entities

Loan
The Library loans books, magazines, and notebooks to its Members.

Each loan is recorded with a unique identifier, the date of checkout, Member,
and due date, which must be automatically determined.
All loans are for 15 days; they may include a maximum of 3 books, 4
magazines, and may or may not include the loan of a notebook.

Only one copy of each publication may be checked out, and it is possible to
enter any comments considered necessary at the level of each copy's loan
(e.g., damaged cover, missing pages, etc.).

In addition, the date on which a new loan is recorded is always the current
date and it must not be possible to change it.

Request for copies (BookRequest)
It often happens that certain books are in high demand, and the Library
decides to request more copies.

To this end, it makes a Request to the corresponding Publishing House. The
system must check that book copies are requested from the indicated
Publishing House.

5



Domains

start to analyze this reality.

Initially, we can clearly distinguish certain simple entities that we can begin to
define, such as, for example, Country, Member and Author.

But first, we should take into account that most of the entities are registered
with an identifier that can be autonumbered, except for the Member Number,
who as we mentioned before, is registered with his or her identity document.
Therefore, we define the Domain ID, with the Autonumber property set to
True.

We also define the Name domain, as a character of 20.

6



Transaction definition: Country

Let's start by defining the Country transaction, with CountryId as primary
key, and CountryName as secondary attribute.
CountryId is based on the ID domain, and to check that the name is not
repeated, we define the corresponding unique index. This same definition is
valid for all entities where it is necessary to check that the name is not
repeated.

7



Transaction definition: Country

If it were necessary to record the cities of each country, because we need to
know the city of birth of the author, we could model it as a weak entity in
relation to the country, since a city does not exist outside that context.

So a second level would be added to the Country transaction, but since City
is considered a weak entity it will not exist as a transaction in itself.

This means that CityId will not exist as a primary key in any table, and
therefore, in order to know, for example, the city of birth of an author, the
pair made up of the attributes CountryId, CityId, which will be the primary
key of the COUNTRYCITY table associated with the second level of the
Country transaction, will be needed.

However, since the description of the reality we are analyzing does not
include the city concept, we will model the Country as a simple transaction.

8



Transaction definition: Member

Let's move on to Member. For this we define the Member transaction, with
the following attributes:

- MemberDocument, which corresponds to the ID card and therefore is not
autonumbered, so we define it as an 8-digit numeric value.
- MemberName, of Name type.
- MemberImage, of Image type.
- MemberAddress, based on the Address semantic domain.
- and MemberPhone, of Phone type.

But, in addition, reality tells us that members must be over 20 years of age, so
we need their date of birth and age, which should be calculated
automatically.
So, to the transaction structure we add these attributes:

- MemberBirthDate, of Date type
- and MemberAge, a numeric value of 3 digits.

How do we calculate the age? With the Age function, which
calculates the age from the date of birth and the current date.
So, we define MemberAge as a calculated attribute that obtains its value from
the following expression:
Age(MemberBirthDate, Today())

Why do we use the Today() function instead of the &today variable?
Because not possible to use variables in the formula declaration.

9



To check that every member is older than 20, it is enough to declare the following Error
rule:

member must be over 20 years if MemberAge <= 20;

It should be noted that we are not considering in this analysis the declaration of rules for
controlling basic data entry, such as, for example, controlling that a member is not
entered without a name, etc.



Transaction definition: Author

Now consider the Authors. We need to create the Author transaction,
with the following attributes:

- AuthorId
- AuthorName
- AuthorImage

Also, we know that the country of the Author must be registered, since
every Author has a country of birth; therefore, we add CountryId and
CountryName, where CountryId is a foreign key and CountryName is an
attribute that is inferred from that foreign key.
In this way, we represent a 1-N relationship between Country and Author.

10



Transaction definition: Book

Now think of the concept of Book. It is a strong entity that is also
identified with an autonumbered value, a title, a date of publication, an
author, and the number of copies purchased by the Library.

But, in addition, reality tells us that a book belongs to a literary genre, since
it can be a Novel, an Essay, etc.

So, how do we model the concept of literary genre? If we think that these
genres are finite, a first option we can consider is the creation of an
enumerated domain.

11



Transaction definition: Book

But the categorization of literary genres has been changing over time and is
likely to continue to do so, so the enumerated domain doesn't seem to be the
best option, as changes would have to be made manually and it would not be
scalable.

We can consider a LiteraryGenre transaction with these attributes:
- LiteraryGenreId
- and LiteraryGenreName.

It is a good decision to define a unique index on the name of the genre in
order to avoid the registration of literary genres with the same name.

But the Book also requires registering the Author and the Publishing House
responsible for its publication. The Author is already defined as an entity, but
the Publishing House is not. And although it is not explicitly declared, in the
analysis the need to model the Publishing House entity arises.

So, we define the PublishingHouse transaction with these attributes:
- PublishingHouseId
- and PublishingHouseName

We can also create the corresponding unique index on the name of the
publisher.

12



Transaction definition: Magazine and Notebook

The Library also offers Magazines and Notebooks to its members, so we
define the Magazine transaction, with the attributes:
- MagazineId
- MagazineTitle
- MagazineImage
- MagazinePublicationDate
- and MagazineCopies to record the number of copies purchased.

In addition, there is the Notebook transaction with these attributes:
- NotebookId
- NotebookImage
- NotebookDescription of LongVarChar type
- and NotebookStatus.

A notebook is or so we define the Status
enumerated domain with these values.

13



Transaction definition: Loan

Now analyze the concept of Loan, which is essential in this reality.

The Library allows a member to borrow a notebook, 3 books and 4 magazines
for 15 days.

We then have a 1-N relationship between the entities Loan and Notebook, and
an N-N relationship between Loan and Book, and between Loan and
Magazine.

How can we model it?

14



Transaction definition: Loan

analyze a first option:

We create the Loan transaction and define the following attributes:
- LoanId
- LoanDate
- MemberDocument
- MemberName
- MemberAddress
- LoanReturnDate

The return date is requested to be calculated automatically. A loan is made
for 15 days, so we declare the following calculation associated with the
attribute LoanReturnDate:
LoanDate.AddDays(15)

In addition, a loan may or may not include a notebook, so we add:
- NotebookId
- and NotebookDescription.

But in this Loan transaction, NotebookId is a non-mandatory foreign key;
therefore, we set its Nullable property to Yes.

15



Transaction definition: Loan

A loan includes several books, with a maximum of 3. So we define a second
level to record them, including a LoanBookComment attribute, to record any
comments needed at the time of the loan.

How do we control that no more than 3 books are entered?

We can define a new LoanBooksQty attribute that counts that amount and
then condition that value in an Error rule:

3 books can be checked if LoanBooksQty > 3;

16



Transaction definition: Loan

But the same loan can include up to 4 magazines, so we can define
another second level, parallel to the book, to register the magazines. It is
also possible to control that no more than 4 are checked out.

17



Transaction definition: Loan

The reality clearly describes that the registration date of a loan must always
be the current date, with no possibility of being modified.

To this end, we declare the following rules:
Default(LoanDate, today());
noaccept(LoanDate);

18



Transaction definition: Loan

Although the objective of this video is to focus on analyzing the transaction
design, we are going to suggest an implementation option so that, when
registering a loan, only notebooks that have Available status are offered.
This implementation can be done from the definition of the transaction
itself and that is why we include it.

We are going to remove the NotebookDescription attribute, because we will
the identifier of a notebook with its description. We select

NotebookId and define it as a Dynamic Combo Box, with NotebookId in the
property Item Values, and NotebookDescription in the property Item
Descriptions.

This will load all the notebooks registered. So that only those with available
status are offered, we declare the following condition:
NotebookStatus = Status.Available;

Also, we must configure the Empty Item property to True, since NotebookId
may not be chosen because it can be null.

Although this is not the only way to control that a notebook is available
when registering a loan, it is an implementation that can be solved from the
definition of the transaction itself.

19



Available quantities of Books and Magazines

Another necessary requirement is to know the availability of books or
magazines in high demand.

We know the number of copies purchased by the Library for each book and
magazine, but we don't know how many are still available.

Can we obtain these values in a simple way and based on the transaction
design?
If in the Book transaction we define a new attribute, BookOnLoanQty, we can
calculate the number of copies borrowed and therefore know the number of
copies available.

What happens if we associate the Count(LoanBookComment) calculation
with this new BookOnLoanQty attribute? Will it effectively sum the number
of copies of that book that have been checked out?
The answer is YES, because the table associated with the transaction where
we define the calculation is BOOK. And the table where the calculation is
resolved is LOANBOOK, since it is determined by the LoanBookComment
attribute.
Between both tables there is an attribute in common which is BookId, and
therefore it is an implicit filter that GeneXus will apply; that is to say, that this
calculation will return the total number of copies of that book that has been
loaned.

20



Available quantities of Books and Magazines

But we need to know the number of copies currently checked out, so we
have to add a condition to the calculation that allows counting the number
of copies currently checked out. For this purpose, we consider loans whose
return date is greater than or equal to the current date.

We can state the following:
Count(LoanBookComment, LoanReturnDate >= servernow())

The servernow() function allows obtaining the server's current date and
time. The Today() function could also be used.

Can we declare this calculation condition? Yes, because the attribute
involved (LoanReturnDate) belongs to the extended table of the table where
the declared calculation is resolved, which is LOANBOOK.

21



Available quantities of Books and Magazines

Therefore, if we know the total number of copies, and the number of copies
currently checked out, then we can know the number of copies currently
available.

So the structure of the Book transaction looks as follows:

22



Available quantities of Books and Magazines

In the same way, we can know the number of available copies of a given
magazine:

23



Transaction definition: Loan

Now we have all the information we need to validate a loan, so let's add the
necessary attributes to validate the availability of the copies to be borrowed:

- BookAvailableQty, at the book level, and
- MagazineAvailableQty, at the magazine level.

And we control with the following Error rules:

24



Loan transaction: Form and tables structure

So far we have met the requirements to register loans. But let's look at the
form generated for the design we have made.

What associated tables are created by GeneXus for this Loan transaction?

It creates 3 tables:
- LOAN, associated with the first level, with LoanId as PK.
- LOANBOOK, associated with the book level, with LoanId and BookId as
compound PK.
- LOANMAGAZINE, associated with the magazine level, with LoanId and
MagazineId as compound PK.

By defining two parallel levels, we see parallel grids in the form. This may be
cumbersome for the end user, who may request to simplify the design, and
manage the information in different, simpler screens.

25



Table diagram

For the current design, GeneXus has created the following tables.

26



Summary

Analyze, evaluate the reality to be modeled and implement the option that
we consider correct, always working together with the end user

Remember that we must always analyze, evaluate the reality to be modeled
and implement the option we consider correct, and for this it is essential to
always work together with the end user, who will guide us in selecting the
design.

Let's not forget that the application must be a support tool for end users to
better manage and develop their business.

27



training.genexus.com
wiki.genexus.com


