
Analysis of the Transaction Design Model

Library



Library

Throughout the previous course, we looked at everything we needed to
correctly model a given reality in GeneXus. In this video, through the analysis
of a limited reality, different options are analyzed to design transactions, using
a set of essential resources and solving a series of real requirements.

Let's suppose that a GeneXus application needs to be designed for managing
the tasks of a library related to the loans of books, magazines, and notebooks.
It works with Members who can access different reading material, such as
books and magazines, as well as computer equipment loaned by the Library.

2



Library

The information to be recorded is as follows:

Country
Each Country is registered with a unique identifier and its name.

Member
Each Library Member is registered with his/her ID card, name, address,
photo and a contact phone number.

Library members must be 20 years of age or older.

Author
Each Author is registered with a unique identifier, name, photo and country
of origin. An Author can have several books published

3



Library

Book
Each book is registered with a unique identifier, title, date of publication and
number of copies available in the Library. It can be a Novel, an Essay, a
Poetry book, etc.; therefore, a book belongs to a literary genre.

In addition, a Book has an Author and a Publishing House in charge of its
publication.

Magazine
Each magazine is registered with a unique identifier, title, date of
publication, cover image and the number of copies available.

Notebook
The services include loans of notebooks to its Members, since many
of them are writers and researchers. Each notebook is registered with a
unique identifier, its image, and short description.

In addition, its status (available or checked out) is recorded.

4



Library

Loan
The Library loans books, magazines, and notebooks to its Members.

Each loan is recorded with a unique identifier, the date of checkout, Member,
and due date, which must be automatically determined.
All loans are for 15 days; they may include a maximum of 3 books, 4 magazines,
and may or may not include the loan of a notebook.

Only one copy of each publication may be checked out, and it is possible to
enter any comments considered necessary at the level of each copy's loan
(e.g., damaged cover, missing pages, etc.).

In addition, the date on which a new loan is recorded is always the current date
and it must not be possible to change it.

Request for copies (BookRequest)
It often happens that certain books are in high demand, and the Library
decides to request more copies.

To this end, it makes a Request to the corresponding Publishing House. The
system must check that book copies are requested from the indicated
Publishing House.

5



Library

start to analyze this reality.

Initially, we can clearly distinguish certain simple entities that we can begin to
define, such as, for example, Country, Member and Author.

But first, we should take into account that most of the entities are registered with
an identifier that can be autonumbered, except for the Member Number, who as
we mentioned before, is registered with his or her identity document.
Therefore, we define the Domain ID, with the Autonumber property set to True.

We also define the Name domain, as a character of 20.

6



Transaction definition: Country

Let's start by defining the Country transaction, with CountryId as primary
key, and CountryName as secondary attribute.
CountryId is based on the ID domain, and to check that the name is not
repeated, we define the corresponding unique index. This same definition
is valid for all entities where it is necessary to check that the name is not
repeated.

7



Transaction definition: Country

If it were necessary to record the cities of each country, because we need to
know the city of birth of the author, we could model it as a weak entity in
relation to the country, since a city does not exist outside that context.

So a second level would be added to the Country transaction, but since City is
considered a weak entity it will not exist as a transaction in itself.

This means that CityId will not exist as a primary key in any table, and therefore,
in order to know, for example, the city of birth of an author, the pair made up of
the attributes CountryId, CityId, which will be the primary key of the
COUNTRYCITY table associated with the second level of the Country
transaction, will be needed.

However, since the description of the reality we are analyzing does not include
the city concept, we will model the Country as a simple transaction.

8



Transaction definition: Member

Let's move on to Member. For this we define the Member transaction, with the
following attributes:

- MemberDocument, which corresponds to the ID card and therefore is not
autonumbered, so we define it as an 8-digit numeric value.
- MemberName, of Name type.
- MemberImage, of Image type.
- MemberAddress, based on the Address semantic domain.
- and MemberPhone, of Phone type.

But, in addition, reality tells us that members must be over 20 years of age, so
we need their date of birth and age, which should be calculated automatically.
So, to the transaction structure we add these attributes:

- MemberBirthDate, of Date type
- and MemberAge, a numeric value of 3 digits.

How do we calculate the age? With the Age function, which
calculates the age from the date of birth and the current date.
So, we define MemberAge as a calculated attribute that obtains its value from
the following expression:
Age(MemberBirthDate, Today())

Why do we use the Today() function instead of the &today variable?
Because not possible to use variables in the formula declaration.

9



To check that every member is older than 20, it is enough to declare the following Error
rule:

member must be over 20 years if MemberAge <= 20;

It should be noted that we are not considering in this analysis the declaration of rules for
controlling basic data entry, such as, for example, controlling that a member is not
entered without a name, etc.



Transaction definition: Author

Now consider the Authors. We need to create the Author transaction,
with the following attributes:

- AuthorId
- AuthorName
- AuthorImage

Also, we know that the country of the Author must be registered, since every
Author has a country of birth; therefore, we add CountryId and CountryName,
where CountryId is a foreign key and CountryName is an attribute that is
inferred from that foreign key.
In this way, we represent a 1-N relationship between Country and Author.

10



Transaction definition: Book

Now think of the concept of Book. It is a strong entity that is also
identified with an autonumbered value, a title, a date of publication, an
author, and the number of copies purchased by the Library.

But, in addition, reality tells us that a book belongs to a literary genre, since
it can be a Novel, an Essay, etc.

So, how do we model the concept of literary genre? If we think that these
genres are finite, a first option we can consider is the creation of an
enumerated domain.

11



Transaction definition: Book

But the categorization of literary genres has been changing over time and is
likely to continue to do so, so the enumerated domain doesn't seem to be the
best option, as changes would have to be made manually and it would not be
scalable.

We can consider a LiteraryGenre transaction with these attributes:
- LiteraryGenreId
- and LiteraryGenreName.

It is a good decision to define a unique index on the name of the genre in
order to avoid the registration of literary genres with the same name.

But the Book also requires registering the Author and the Publishing House
responsible for its publication. The Author is already defined as an entity, but
the Publishing House is not. And although it is not explicitly declared, in the
analysis the need to model the Publishing House entity arises.

So, we define the PublishingHouse transaction with these attributes:
- PublishingHouseId
- and PublishingHouseName

We can also create the corresponding unique index on the name of the
publisher.

12



Transaction definition: Magazine and Notebook

The Library also offers Magazines and Notebooks to its members, so we
define the Magazine transaction, with the attributes:
- MagazineId
- MagazineTitle
- MagazineImage
- MagazinePublicationDate
- and MagazineCopies to record the number of copies purchased.

In addition, there is the Notebook transaction with these attributes:
- NotebookId
- NotebookImage
- NotebookDescription of LongVarChar type
- and NotebookStatus.

A notebook is or so we define the Status
enumerated domain with these values.

13



Transaction definition: Loan

Now analyze the concept of Loan, which is essential in this reality.

The Library allows a member to borrow a notebook, 3 books and 4
magazines for 15 days.

We then have a 1-N relationship between the entities Loan and Notebook,
and an N-N relationship between Loan and Book, and between Loan and
Magazine.

How can we model it?

14



Transaction definition: Loan

analyze a first option:

We create the Loan transaction and define the following attributes:
- LoanId
- LoanDate
- MemberDocument
- MemberName
- MemberAddress
- LoanReturnDate

The return date is requested to be calculated automatically. A loan is
made for 15 days, so we declare the following calculation associated
with the attribute LoanReturnDate:
LoanDate.AddDays(15)

In addition, a loan may or may not include a notebook, so we add:
- NotebookId
- and NotebookDescription.

But in this Loan transaction, NotebookId is a non-mandatory foreign
key; therefore, we set its Nullable property to Yes.

15



Transaction definition: Loan

A loan includes several books, with a maximum of 3. So we define a second
level to record them, including a LoanBookComment attribute, to record any
comments needed at the time of the loan.

How do we control that no more than 3 books are entered?

We can define a new LoanBooksQty attribute that counts that amount and
then condition that value in an Error rule:

3 books can be checked if LoanBooksQty > 3;

16



Transaction definition: Loan

But the same loan can include up to 4 magazines, so we can define
another second level, parallel to the book, to register the magazines. It is
also possible to control that no more than 4 are checked out.

17



Transaction definition: Loan

The reality clearly describes that the registration date of a loan must always
be the current date, with no possibility of being modified.

To this end, we declare the following rules:
Default(LoanDate, today());
noaccept(LoanDate);

18



Transaction definition: Loan

Although the objective of this video is to focus on analyzing the transaction
design, we are going to suggest an implementation option so that, when
registering a loan, only notebooks that have Available status are offered.
This implementation can be done from the definition of the transaction
itself and that is why we include it.

We are going to remove the NotebookDescription attribute, because we
will the identifier of a notebook with its description. We select
NotebookId and define it as a Dynamic Combo Box, with NotebookId in the
property Item Values, and NotebookDescription in the property Item
Descriptions.

This will load all the notebooks registered. So that only those with available
status are offered, we declare the following condition:
NotebookStatus = Status.Available;

Also, we must configure the Empty Item property to True, since
NotebookId may not be chosen because it can be null.

Although this is not the only way to control that a notebook is available
when registering a loan, it is an implementation that can be solved from
the definition of the transaction itself.

19



Available quantities of Books and Magazines

Another necessary requirement is to know the availability of books or
magazines in high demand.

We know the number of copies purchased by the Library for each book
and magazine, but we don't know how many are still available.

Can we obtain these values in a simple way and based on the transaction
design?
If in the Book transaction we define a new attribute, BookOnLoanQty, we
can calculate the number of copies borrowed and therefore know the
number of copies available.

What happens if we associate the Count(LoanBookComment) calculation
with this new BookOnLoanQty attribute? Will it effectively sum the
number of copies of that book that have been checked out?
The answer is YES, because the table associated with the transaction
where we define the calculation is BOOK. And the table where the
calculation is resolved is LOANBOOK, since it is determined by the
LoanBookComment attribute.
Between both tables there is an attribute in common which is BookId, and
therefore it is an implicit filter that GeneXus will apply; that is to say, that
this calculation will return the total number of copies of that book that has
been loaned.

20



Available quantities of Books and Magazines

But we need to know the number of copies currently checked out, so we
have to add a condition to the calculation that allows counting the
number of copies currently checked out. For this purpose, we consider
loans whose return date is greater than or equal to the current date.

We can state the following:
Count(LoanBookComment, LoanReturnDate >= servernow())

The servernow() function allows obtaining the server's current date and
time. The Today() function could also be used.

Can we declare this calculation condition? Yes, because the attribute
involved (LoanReturnDate) belongs to the extended table of the table
where the declared calculation is resolved, which is LOANBOOK.

21



Available quantities of Books and Magazines

Therefore, if we know the total number of copies, and the number of copies
currently checked out, then we can know the number of copies currently
available.

So the structure of the Book transaction looks as follows:

22



Available quantities of Books and Magazines

In the same way, we can know the number of available copies of a given
magazine:

23



Transaction definition: Loan

Now we have all the information we need to validate a loan, so let's add the
necessary attributes to validate the availability of the copies to be
borrowed:

- BookAvailableQty, at the book level, and
- MagazineAvailableQty, at the magazine level.

And we control with the following Error rules:

24



Loan transaction: Form and Table structure

So far we have met the requirements to register loans. But let's look at
the form generated for the design we have made.

What associated tables are created by GeneXus for this Loan
transaction?

It creates 3 tables:
- LOAN, associated with the first level, with LoanId as PK.
- LOANBOOK, associated with the book level, with LoanId and BookId as
compound PK.
- LOANMAGAZINE, associated with the magazine level, with LoanId and
MagazineId as compound PK.

By defining two parallel levels, we see parallel grids in the form. This may
be cumbersome for the end user, who may request to simplify the
design, and manage the information in different, simpler screens.

25



Table Diagram

For the current design, GeneXus has created the following tables. In
particular, look at the LOAN, LOANBOOK and LOANMAGAZINE tables,
corresponding to the tables associated with the three levels of the Loan
transaction defined.

Can we propose another design for the Loan transaction? Yes.

26



Loan entity Option 2: Three transactions

So, see a second option to model the Loan.

Let's suppose that the end user has asked us to or the
loading of this screen, and display the information on three screens:

- a screen for registering the general information of the loan, in which the loan
is registered with its date, the member's data, and whether a notebook is
included or not.
- a screen for registering the books loaned, in which the books are registered
with the necessary controls already defined.
- and a screen for registering the magazines loaned, in which the magazines
are registered with the necessary controls already defined.

How can we do so?

27



Loan entity Option 2: Three transactions

The first screen corresponds to the general loan data, so we delete the Loan
transaction levels, and leave the general information, with the following
rules.

The following form is generated:

28



Loan entity Option 2: Three transactions

To provide another screen with the book register, we need a new transaction.
We call it BookLoan.

We want to enter the loan identifier, view its general information, and enter the
books. Therefore, the primary key will also be LoanId, and thus a new table will
not be created because there is already one where LoanId is the primary key.
This way we will be referencing the same Loan entity and only the table
associated with the second level will be created.

The BookLoan transaction then has the following structure, with the following
rules.

The following form is generated:

29



Loan entity Option 2: Three transactions

We will do something similar to record the loans of magazines. We create the
MagazineLoan transaction with the following structure, and the following
rules:

30



Loan entity Option 2: Three transactions

Before analyzing the generated table diagram, let's look at the tables
associated with the transactions created in this proposal. GeneXus also
creates 3 tables:

- LOAN
- BOOKLOANBOOK
- and MAGAZINELOANMAGAZINE

31



Table Diagram

look at the table diagram.

If we look at the LOAN, BOOKLOANBOOK and MAGAZINELOANMAGAZINE
tables, we can see that they have exactly the same structure as those
generated in the previously proposed design.

32



Table Diagram

This means that the difference between both designs is not in the structures
generated but in the screens offered to the end user for managing the
information. It will always be up to the end users to tell us which design is best
suited to their business.

From the database structure point of view, it is exactly the same.

33



Loan entity Option 3: Two transactions

But we can also propose a third option for Loan modeling.

Perhaps we could consider that the Library bases the loans on books, and the
end user requests a single screen where the general data of the loan and also
of the books to be checked out are entered. Then, from another screen, the
magazines included in the loan are registered.

34



Loan entity Option 3: Two transactions

For this purpose, we consider the Loan transaction with a second level to
record the books. Its structure would be as follows, with the following rules:

35



Loan entity Option 3: Two transactions

For registering the magazines included in the loan, we have the
MagazineLoan transaction with the following structure, and the following
rules:

36



Loan entity Option 3: Two transactions

What tables does GeneXus create in relation to these transactions? 3 tables:
LOAN, LOANBOOK and MAGAZINELOANMAGAZINE.

- LOAN and LOANBOOK associated with the Loan transaction
- LOAN and MAGAZINELOANMAGAZINE associated with the MagazineLoan
transaction.

37



Table Diagram

Let's look once again at the generated table diagram.

If we look again at the structure of the LOAN, LOANBOOK and
MAGAZINELOANMAGAZINE tables, we see that they are the same as the
tables generated in the previous proposals.

These proposals, then, change the screens offered to the end user but not
the structure of the database.

If, instead of prioritizing book loans, priority had been given to magazines,
the structure of the tables generated would remain the same.

38



Reality

Now, is there any other totally flat option, which does not include second
levels? If the end user requests simple screens without grids, what can we
offer?

Remember that there is an N-N relationship between the entities Loan and
Book, and also between Loan and Magazine.

We will analyze it for Loan and Book, and it will be analogous for Loan and
Magazine.

39



Loan entity Option 4: Three simple transactions (one level transactions)

consider the following structures.

For an N-N relationship to exist between them we need a relationship table
with the compound key LoanId, BookId.

We then define the BookLoan transaction with the primary key made up of
LoanId, BookId, and the following structure.

Which tables are generated? The same ones we have seen before.

40



BookRequest transaction: Structure

At this point, we still have to solve the modeling for the request of new copies
of books to a certain Publisher.

For this we are going to define the BookRequest transaction, which will
represent a request to a Publisher, with the following attributes:
- BookRequestId, based on the ID domain
- BookRequestDate, with the current date by default
- PublishingHouseId, since the request is made to a Publishing House
- PublishingHouseName, which will be an attribute inferred from the foreign
key PublishingHouseId.

Between this new entity and the Book there is an N-N relationship, since a
request includes several books, and in turn a book can be included in several
requests. We have already discussed that there are several design options.
Let's add Book as a second level in the Request. Remember that it is an
important requirement to check that the books indicated are published by the
Publishing House in charge.
If we recall the structure of the Book transaction, we see that it has
PublishingHouseId as FK, since a book is published by a Publishing House.

Can we also add that attribute in this new transaction so that it is inferred by
BookId and we can check if it is indeed a book published by the Publishing
House to which the request is made?

41



BookRequest transaction: Structure

What happens when we try to add it? GeneXus returns an error, because the
PublishingHouseId attribute is already declared in the transaction structure
and we cannot add it again.

We have a multiple reference problem. We need to make reference to the
Publishing House concept more than once. So, how can we solve a conflict
of this type? By using subtypes. This means to define new attributes, with
other names, that refer to the same concept of the Publishing House.

But... Where do we define the subtype? In the Publishing House concept
referred to in the header, or referred to in the 2nd level? Is it the same?

42



BookRequest transaction: Structure

Let's look at the transaction design: the PublishingHouseId attribute is present in
the Book transaction structure as FK, therefore, GeneXus infers that value from
BookId.
If then both BookId and PublishingHouseId are present in another transaction, as
would happen in this case in the 2nd level of BookRequest, then GeneXus will apply
that relationship and PublishingHouseId will be an inferred FK.

So, would it be correct to rename the attributes here to define the required
subtype group? No, because we would be removing this relationship, and we
would allow the user to add a different PublishingHouseId value than the one
previously defined in Book.

43



BookRequest transaction: Subtype group in the first level

Let's look at the BookRequest header. Here the PublishingHouseId attribute
is a common FK, which is not inferred from anywhere; therefore, we can
perfectly remove it, define new attributes and declare them as subtypes of
PublishingHouseId and PublishingHouseName. Then we will be able to
compare them in an Error rule to validate that the requested books are
from the indicated Publishing House.

To complete the requirement we declare the following rules.
Since this Error rule involves attributes from both levels, it is a rule
associated by GeneXus with the 2nd level. Therefore, it will be triggered
for each line. This means that when entering a new BookId, the condition
will be evaluated, and if true, the error will be triggered.

44



BookRequest transaction: Subtype group throughout the second level

We have met the requirement. What if we had defined the entire second
level as a group of subtypes?

We would also solve it, with the difference that (as we analyzed in detail in
the subtypes video) although this solution may be less obvious and lead to
having to create more subtypes to be able to infer them where needed, its
main advantage is that the ambiguity is resolved in the same table that
causes

45



BookRequest transaction: Subtype group in the Book transaction

Could we propose some other option to avoid the definition of subtypes in
the two-level transaction?

Yes, but we must make it clear that as a working criterion we always suggest
addressing the reference conflict in the transaction that presents it. That is
why we have solved it in the BookRequest transaction itself.

OK. We could look at the Book transaction, and define the subtype group
there.

What is gained with this? That there is no reference conflict in the
BookRequest transaction.
But we must keep in mind that if there are queries already defined on Book,
for example, a book catalog, they will have to be updated because the names
of some attributes have been changed.

Finally, could the use of subtypes be avoided? Yes, for example, by calling on
each line, and before recording, a process that returns whether the book is
published by the indicated Publishing House or not.
The definition of the subtype group is avoided, but a process is invoked on
each line to evaluate a condition that can be resolved in the definition of the
transaction itself.

46



Summary

In conclusion, we should remember that we must always analyze,
evaluate the reality to be modeled and implement the option we
consider correct, and for this it is essential to always work together with
the end user, who will guide us in selecting the design.

Let's not forget that the application must be a support tool for end users
to better manage and develop their business.

47



training.genexus.com
wiki.genexus.com


