Aggregate Formulas

GeneXus

Review of aggregate formulas

Table A Table B Table C

NAVIGATED TABLE

Table D

-They perform calculations and
searches over many records, in any

table of the model and its extended
table.

First, let's review some concepts.

Aggregate formulas allow you to perform calculations or searches
involving many records in a table and related values from the extended
table of the table run through.

Review of aggregate formulas

Name Type Description Formula
= Eifines
? Invoiceld d Invoice Id
Aggregate formu'as: - Count p InvoiceDate Date Invoice Date
- Sum A Customerld Numeric(4.0) Customer Id
- CustomerlName Character(20) Customer Name
- Average -« CustomerTotalPurchases Numeric(4.0) Customer Total Purchases
- Max =[] Fight Flight Flight
- Min - ¢ rightid bt Flight 1d
_ F|nd b é‘ FlightCapacity MNumeric(4.0) Flight Capacity count(FlightSeatLocation)
+ ¥ FlightAvailableSeats Mumeric(4.0)} Flight Available Seats
I p InvoiceFlightSeatQty Mumeric(4.0} Invoice Flight Seat Qty
s ét., FlightFinalPrice Price Flight Final Price FlightPrice * (1-AirlineDiscountPercentage/100...
B & InvoiceFlightAmount Amount Invoice Flight Amount InvoiceFlightSeatQty™FlightFinalPrice
& InvoiceTotalAmount Amount Invoice Total Amount sum(InvoiceFlightamount)
Syntax:
AggregateFormula(AggregateExpression, AggregateCondition, ,) if TriggeringCondition
l I'l Il Il |
optional optional optional optional

Aggregate formulas don't need a context, but if

there is one you can filter the result.

These formulas allow us to count (with Count), sum (with Sum) or average
(with Average) several records, perform searches such as finding the
maximum (with Max) or minimum (with Min) value of an attribute in a set of
records, or given many records in a table, find a value of an attribute (using
Find) whose record is the first one found that meets certain conditions.

In the syntax, the aggregate expression will be the one searched for,
maximized, minimized, summed or averaged, among the records that meet
the aggregation condition. It can contain attributes (including formula
attributes), constants and variables (user-created variables are only allowed
in inline formulas). Only for the Count case, it is not an expression but an
attribute. For Sum and Average, the result of the aggregation expression
must be a numerical value.

The aggregation condition is the condition that records must verify to be
considered in the aggregation. It can contain attributes, constants and
variables (user variables only in inline formulas). It is optional and may not be
included.

The default value will be returned when no record is found on which to
perform the aggregation; it may be because none meets the aggregation
condition, because it doesn't meet the implicit aggregation condition, or
because the table is empty. It is a constant and is also optional.

Review of aggregate formulas (continued)

The returned value is the attribute whose value is returned by the formula
when it finds records that meet the aggregation condition. While the
returned value may be a value (as in the case where the default value is
returned), it is usually an attribute. Its inclusion is optional and only some
formulas carry this fourth parameter.

The triggering condition is the one that determines that the formula is
calculated with the aggregation expression that precedes it.

It is optional and the only attributes allowed are those belonging to the
associated table and its extension. Triggering conditions can only be used in
global aggregate formulas because in inline formulas they are not part of the
formula definition, and their triggering is conditioned in the code by means
of conditional clauses (e.g. if, else, do case, etc.).

While a horizontal formula needs a context to be evaluated, an aggregate
formula does not necessarily need one. However, if a context table exists,
not all the records that the formula explicitly states will be considered, but
only those that also match the implicit conditions arising from that context.

Example: Count

Name
=) Flight
??'gmgmd AggregateFormula

AggregateExpression

HamEane Nane

AggregateCondition

AirlineDiscountPercentag Formula Editor
,, FlightFinalPrice

count(FlightSeatLecation, FlightSeatlLocation

= Location.Window) =

Inline formula:

Global formula— . FlightCapacity
=] seat
9 Flightseatid Cancel
? FlightSeatChar SESTCTTET
p FlightSeatLocation Location
- - ; Flightld FlightSeatld FlightSeatLocation
Flightld FlightDepartureAirportid <
@ 1 1 A Window <«——
1 1 B Aisle
2
1 2 A Window <——
3
1 2 B Aisle
1 3 C Middle
2 1 A Window
| | | Hetp| | 2 1 B Middle
~| 3
1 &FlightCapacity = count(FlightSeatlLocation, FlightSeatlocation = Location.Window)

For example, the FlightCapacity attribute of the Flight transaction is a
count formula that runs through the FLIGHTSEAT table and counts the
number of seats on the flight.

Since the table associated with the attribute is the Flight table, which
has a 1 to N relationship with the FLIGHTSEAT table navigated by the
Count, only the related records will be counted, i.e. the seats
corresponding to the flight instantiated in Flight. If there were no
relationship, all records in the FLIGHTSEAT table would be counted.

In addition, as we indicate that only seats that are windows will be
counted, only those that meet the filter condition will be counted
from the set of related records.

Since it is a Count formula, the aggregate expression is only an
attribute that determines the table where the records will be counted
- in this case, FlightSeatLocation - the aggregate condition is the filter
that the seats must meet (that they are window). Also, since it is not a
Max or Min formula, it has no default value, no return value and there
is no trigger condition defined.

Here we see the same definition as an inline formula in the source of a
procedure. In this case where the formula is “loose” there is no
implicit condition: the window seats of all flights will be counted, not
of a particular flight, as was the case with the global formula" or as
would be the case if placed inside this For Each.

Example: associated table = navigated table

Type
Invoiceld Id : =
£ nvolceDate Date | for each Tnvoice > Base table: INVOICE
CustomerId Numeric(4.0) n1qu_eq nvoicebate)
Customertiame Character(20) &T(:.)tﬁ_j‘,’DctE‘ = Sum(InvoiceAmount)
print PBTotalsByDate
InvoiceAmount Amount

endfor Navigated table: INVOICE

Let's analyze a particular case which is when the formula is in a certain
context and the table navigated by the formula matches that context
table.

In this example we want to print, for each invoice date, the sum total of
all invoices with that invoice date.

The table navigated by the Sum formula is Invoice, and it matches the
base table of the For Each, which is also Invoice.

In this case, due to the Unique clause by InvoiceDate, GeneXus will group
the information by invoice date, both in the For Each and in the Sum
formula. That is, the Sum formula will have an implicit equality condition
by the InvoiceDate attribute, which will be considered as given.

It is as if it were a control break, breaking by InvoiceDate. Let’s see the
navigation list.

Source | Layout | Rules | Conditions | Variables ‘ Help ‘ Docu

Pattern: |

© "3 InvoicesByDate Procedure InvoicesByDate Navigation Report

Name o» InvoicesByDate Environment:

Description: Spec. Version

1ifor each Invoice

tput Devices: File
Qutput Devices: le Form Class:

c# Default |

S17_0_3-148731

2 Unique InvoiceDate Main: Yes Program Name:
3] &TotalByDate = Sum(InvoiceAmount) call Protoco!
4 print PBTotalsByDate
5" endfor —
For Each Invoice (Line: T)
Invoices by date NONE
Unique InvoiceDate
gation 5 FirstRecord
Date Total amount
E, nvoice ([nvoiceld) INTO InvoiceDate
03/02/21 100.00 =sum(InvoiceAmount) navigation (InvoiceDate)
Formulas
04/08/21 1000.00
Navigation to evaluate: sum(InvoiceAmount)
Giver InyoiceDate
ndex IINVOICE
04n2/1 1300.00 Group by: InvoiceDate

E =Invoice ([nvoiceDate)

We check that the base table of the For Each is Invoice and that the Unique

is by InvoiceDate.

Below we see the formula that is also grouping by InvoiceDate (note the
Group by) and also InvoiceDate is Given. Therefore, it will add only the

records of that date, just as we wanted.

Pattern

© "+ InvoicesByDale Procedure InvoicesByDate Navigation Report
Source o~ InvoicesBylate sl Default (C#
1 print Titles == v sByDa
for each Invoice HTTP
&Tot te = Sum(InvoiceAmount)
print PBTotalsByDate
endfor EVELS
| celd
. Index: [IN E
Invoices by date ot
Date Total amount
B nwe
0302721 100.00 ceDate
Formul
04/08/21 1000.00 i InvoiceAmount
041221 1300.00

What would happen if we removed the Unique clause?

If we do not place the Unique, how does GeneXus know that we want to
add only the invoice totals of the invoice date on which it is positioned?
That is, if instead of writing the formula we decompose it in its calculation
through a For Each...

What will be printed? We do have a control break, but... we are not
indicating the break criteria by InvoiceDate. We have not specified an order
clause for the external For Each, so it will choose a primary key, and it will
always stay in the internal For Each with only one record, that of Invoiceld.

However, let’s look at the navigation list displayed by GeneXus.

Note that the Unique clause is no longer shown, but GeneXus
automatically adds a DISTINCT clause, so the result remains the same.
GeneXus had the intelligence to detect that we wanted to group by invoice
date and reflected that in the code generation, making the list work the
way we wanted.

Although GeneXus, depending on the case, is capable of automatically
detecting what the developer wants to do, we should include the Unique
clause, so that our intention is clear in the programming of the code.

Example 2: associated table = navigated table

Name Type
oo
>? CustomerId Mumeric(4.0) ? Tripld d
.'.. LastTripinformation 3 >p CustomerName Character(20) p TripDate Date
i . @ Customerlastiame Character(20) - ® TripDescription VarChar(1K)
HIllinE ‘ LA = TIEnE | HrElilEs | il | HOCUMENTAto . e CustomerAddress Address, GeneXus %99 A Customerld Numeric(4.0)
15=Parm{in: &CustomerId, in: &SearchDate); CustomerPhane Phone, GenaXus ;¥ CustomerName Character(20)
2 00utput_file('LastTripInformation®', 'PDF'); =~ Customertmall Email, GeneXus ¥ CustomerlastName Character(20)
CustomerAddedDate Date EE Attraction Attraction
; ? Attractionld d
% LastTriolnf x - o AftractionName Name
+ " LastTnplnformation ¢ Countryid .
Lt | Rules | Serafifens TR NaVIgated table: TRI - ¥ CountryName Name
¥ Cityd i
| Base table: TRIP
¥ CityName Name

For each Trip
Where Tripld = Max(TripDate, TripDate <= &SearchDate and Customerld=&Customerld, @, Tripld)

print LastTrip ‘
Endfor T

AggregateExpression AggregateCondition

e L VO R

Now let's see a similar case where a table is navigated and an
aggregation is performed on the same table. In this case, the
aggregation will be a max formula.

Let's suppose that given a customer who has many trips, you want to
retrieve the data of a trip the customer made, which was immediately
before a given date; i.e. the last trip before that date.

Suppose you want the information to be output in a list that prints the
trip data. The procedure receives in a parameter the identifier of the
customer who wants the information and the search date.

In the source of the procedure there is a For Each that runs through the
Trip table and the Where will filter by the Tripld returned by the Max
formula. Next, the data corresponding to that trip will be printed.

In the Max formula, the attribute to maximize is TripDate, since we
want the trip that was immediately prior to a given date, so it will be
the trip with the highest possible date, but lower than or equal to the
search date.

The aggregation condition specifies that the trip must have a date
lower than or equal to the given date and also belong to the customer
requesting the information. The default value returned if no trip is
found that meets these conditions is O and in case it is found it will be

the identifier of the trip found.

Now let's analyze what we have programmed. The For Each will iterate over the TRIP table
and set that context for the Max formula.

The Max formula will also iterate on the TRIP table, but due to the context, an automatic
filter will be set, because both tables are related. In this case, it is the same table, so the
formula will be filtered by the Tripld that is positioned in the For Each. Therefore, it will
always return the Tripld in which the For Each is located, and will be like not having
written anything. This is not what we need.

In short, we need to be careful when an aggregate formula navigates the same table as
that of its context because, most times, if we don't specify otherwise, it will apply a filter
by primary key, which will cause that the navigated table will not be navigated at all and
will always retrieve the same record in which it was positioned.

Example 2: associated table = navigated table

Name Type MName Type
= St :
b ? CustomerId Numeric(4.0) : ? Tripld Id
“_ LastTripinformation X [p CustomerName Character(20) p TripDate Date
) i ® CustomerLastName Character(20) - ® TripDescription VarChar(1K)
source ‘ Layout Lonaitons | Vanables =lp | Yocumentatio .. e customerAddress Address, GeneXus < > > A CustomerId Numeric(4.0)
1{EParm(in: &CustomerId, in: &SearchDate); -~ ® CustomerPhone Phone, GeneXus ? ¥ CustomerName Character(20)
2 H0utput_file('LastTripInformation', 'PDF'); =~ Customertmall Emall, GenaXus - ¥ CustomerlastName Character(20)
“ ® CustomerAddedDate Date £[=] attraction Aftraction
. ? Attractionld d
.) -~ ¥ AttractionName Name
4" LastTriplnformation X ¥ Countryd i
c.‘|3. es | Conditions | Va es | He ‘ ocumentatio | - ¢ CountryName Name
- ¥ Cityld id
V| ¥ CityName Name

&TripId = Max(TripDate, TripDate <= &SearchDate and CustomerId=&CustomerId, @, TripId)
For each Trip

Where TripId = &Tripld

print LastTrip
Endfor

The solution in this case is to first run the formula to look for the trip
identifier that meets the desired conditions and then filter the For Each
by that identifier value.

10

Example 3: associated table = navigated table

Name Type Description Formula Nullable
—-% Invoice Invoice Invoice

? Invoiceld Id Invoice Id Mo

p InvoiceDate Date Invoice Date Mo

- A Customerld Numeric(4.0) Customer Id No

-« CustomerName Character(20) Customer Name

InvoiceAmount Amount Invoice Amount Mo

- A‘ InvoiceAuxDate Date Invoice Aux Date InvoiceDate

h '—A\ InvoiceAuxCustomerId Id Invoice Aux Customer Id CustomerTd

- '—A\ InvoiceBeforeDate Date Invoice Before Date max{InvoiceDate, InvoiceDate <=InvoiceAuxDate ... -

Formula Editor

Eﬂax[lnvoiceDatej InvoiceDate<=InvoicefuxDate and CustomerId=InvoiceAuxCustomerId, , InvoiceDate)

—

Now let's look at a similar case to the previous one in a global formula, in
which given an invoice from a customer, we want to find the date of the
previous invoice from the same customer. To solve this, we will use a
Max formula similar to the one we defined before, but defining an
attribute as a global formula.

Note that again we are trying to define a formula that will navigate over
the same table associated with the formula, so again the formula will be
filtered by its context and will only navigate over a single record!

The difference between this case which is a global formula and the
previous one which was an inline formula, is that in the previous one we
could trigger the formula outside the context table to break the implicit
filter, but in the case of a global formula this is not possible, so we can
NEVER have a global aggregate formula that navigates the same table.

11

Example 3: associated table = navigated table

Name Type Description Formula Nullable
E' Invoice Invoice Invoice

? Invoiceld d Invoice Id No

p InvoiceDate Date Invoice Date No

- A CustomerId Humeric(4.0) Customer Id No

- W CustomerName Character(20) Customer Name

- ¥ CustomerTotalPurchases Numeric(4.0) Customer Total Purchases

- ® InvoiceTotalAmount Amount Invoice Total Amount No

- A InvoiceBeforeDate Date Invoice Before Date GetlnvoiceBeforeDate(InvoiceDate) -

Aggregate formulas don't need a context, but if

there is one you can filter the result.

For this purpose, we will have to define it as a horizontal formula and
perform the calculation within a procedure.

In summary, this confirms what we said before: that although
aggregate formulas don't need a context to be evaluated (as horizontal
formulas do), in the event that such a context exists, not all the records
that the formula explicitly establishes will be considered, but only those
that also match the implicit conditions that arise from that context.

And it is important to make sure that the context doesn't invalidate the
objective we were looking for with the formula, as we saw in the last
examples presented.

12

GeneXus’

training.genexus.com
wiki.genexus.com

