
Here is a more detailed analysis of aggregate formulas and examples of
their use.

1

First, let's review some concepts.

Aggregate formulas allow you to perform calculations or searches
involving many records in a table and related values from the extended
table of the table run through.

2

These formulas allow us to count (with Count), sum (with Sum) or average (with Average) several
records, perform searches such as finding the maximum (with Max) or minimum (with Min) value
of an attribute in a set of records, or given many records in a table, find a value of an attribute
(using Find) whose record is the first one found that meets certain conditions.

In the syntax, the aggregate expression will be the one searched for, maximized, minimized,
summed or averaged, among the records that meet the aggregation condition. It can contain
attributes (including formula attributes), constants and variables (user-created variables are only
allowed in inline formulas). Only for the Count case, it is not an expression but an attribute. For
Sum and Average, the result of the aggregation expression must be a numerical value.

The aggregation condition is the condition that records must verify to be considered in the
aggregation. It can contain attributes, constants and variables (user variables only in inline
formulas). It is optional and may not be included.

The default value will be returned when no record is found on which to perform the aggregation;
it may be because none meets the aggregation condition, because it doesn't meet the implicit
aggregation condition, or because the table is empty. It is a constant and is also optional.

3

The returned value is the attribute whose value is returned by the formula
when it finds records that meet the aggregation condition. While the
returned value may be a value (as in the case where the default value is
returned), it is usually an attribute. Its inclusion is optional and only some
formulas carry this fourth parameter.

The triggering condition is the one that determines that the formula is
calculated with the aggregation expression that precedes it.
It is optional and the only attributes allowed are those belonging to the
associated table and its extension. Triggering conditions can only be used
in global aggregate formulas because in inline formulas they are not part
of the formula definition, and their triggering is conditioned in the code by
means of conditional clauses (e.g. if, else, do case, etc.).

While a horizontal formula needs a context to be evaluated, an aggregate
formula does not necessarily need one. However, if a context table exists,
not all the records that the formula explicitly states will be considered, but
only those that also match the implicit conditions arising from that
context.

4

For example, the FlightCapacity attribute of the Flight transaction is a count formula that
runs through the FLIGHTSEAT table and counts the number of seats on the flight.

Since the table associated with the attribute is the Flight table, which has a 1 to N
relationship with the FLIGHTSEAT table navigated by the Count, only the related records will
be counted, i.e. the seats corresponding to the flight instantiated in Flight. If there were no
relationship, all records in the FLIGHTSEAT table would be counted.

In addition, as we indicate that only seats that are windows will be counted, only those that
meet the filter condition will be counted from the set of related records.

Since it is a Count formula, the aggregate expression is only an attribute that determines the
table where the records will be counted in this case, FlightSeatLocation the aggregate
condition is the filter that the seats must meet (that they are window). Also, since it is not a
Max or Min formula, it has no default value, no return value and there is no trigger condition
defined.

Here we see the same definition as an inline formula in the source of a procedure. In this

flights will be counted, not of a particular flight, as was the case with the global formula" or
as would be the case if placed inside this For Each.

Let's analyze a particular case which is when the formula is in a certain
context and the table navigated by the formula matches that context
table.

In this example we want to print, for each invoice date, the sum total of all
invoices with that invoice date.

The table navigated by the Sum formula is Invoice, and it matches the
base table of the For Each, which is also Invoice.

In this case, due to the Unique clause by InvoiceDate, GeneXus will group
the information by invoice date, both in the For Each and in the Sum
formula. That is, the Sum formula will have an implicit equality condition
by the InvoiceDate attribute, which will be considered as given.

It is as if it were a control break, breaking by InvoiceDate
navigation list.

6

We check that the base table of the For Each is Invoice and that the
Unique is by InvoiceDate.

Below we see the formula that is also grouping by InvoiceDate (note the
Group by) and also InvoiceDate is Given. Therefore, it will add only the
records of that date, just as we wanted.

7

What would happen if we removed the Unique clause?
If we do not place the Unique, how does GeneXus know that we want to
add only the invoice totals of the invoice date on which it is positioned?
That is, if instead of writing the formula we decompose it in its calculation
through a For Each...

What will be printed? We do have a control break, but... we are not
indicating the break criteria by InvoiceDate. We have not specified an
order clause for the external For Each, so it will choose a primary key, and
it will always stay in the internal For Each with only one record, that of
InvoiceId.

Note that the Unique clause is no longer shown, but GeneXus
automatically adds a DISTINCT clause, so the result remains the same.
GeneXus had the intelligence to detect that we wanted to group by
invoice date and reflected that in the code generation, making the list
work the way we wanted.

Although GeneXus, depending on the case, is capable of automatically
detecting what the developer wants to do, we should include the Unique
clause, so that our intention is clear in the programming of the code.

8

Now let's see a similar case where a table is navigated and an aggregation is performed on the
same table. In this case, the aggregation will be a max formula.

Let's suppose that given a customer who has many trips, you want to retrieve the data of a trip
the customer made, which was immediately before a given date; i.e. the last trip before that
date.

Suppose you want the information to be output in a list that prints the trip data. The
procedure receives in a parameter the identifier of the customer who wants the information
and the search date.

In the source of the procedure there is a For Each that runs through the Trip table and the
Where will filter by the TripId returned by the Max formula. Next, the data corresponding to
that trip will be printed.

In the Max formula, the attribute to maximize is TripDate, since we want the trip that was
immediately prior to a given date, so it will be the trip with the highest possible date, but lower
than or equal to the search date.
The aggregation condition specifies that the trip must have a date lower than or equal to the
given date and also belong to the customer requesting the information. The default value
returned if no trip is found that meets these conditions is 0 and in case it is found it will be the
identifier of the trip found.

Now let's analyze what we have programmed. The For Each will iterate over the TRIP table and
set that context for the Max formula.
The Max formula will also iterate on the TRIP table, but due to the context, an automatic filter

9

will be set, because both tables are related. In this case, it is the same table, so the formula
will be filtered by the TripId that is positioned in the For Each. Therefore, it will always return
the TripId in which the For Each is located, and will be like not having written anything. This
is not what we need.

In short, we need to be careful when an aggregate formula navigates the same table as that
of its context because, most times, if we don't specify otherwise, it will apply a filter by
primary key, which will cause that the navigated table will not be navigated at all and will
always retrieve the same record in which it was positioned.

9

The solution in this case is to first run the formula to look for the trip identifier that meets the
desired conditions and then filter the For Each by that identifier value.

10

Now let's look at a similar case to the previous one in a global formula, in which given an
invoice from a customer, we want to find the date of the previous invoice from the same
customer. To solve this, we will use a Max formula similar to the one we defined before, but
defining an attribute as a global formula.

Note that again we are trying to define a formula that will navigate over the same table
associated with the formula, so again the formula will be filtered by its context and will only
navigate over a single record!

The difference between this case which is a global formula and the previous one which was
an inline formula, is that in the previous one we could trigger the formula outside the
context table to break the implicit filter, but in the case of a global formula this is not
possible, so we can NEVER have a global aggregate formula that navigates the same table.

11

For this purpose, we will have to define it as a horizontal formula and perform the calculation
within a procedure.

In summary, this confirms what we said before: that although aggregate formulas don't
need a context to be evaluated (as horizontal formulas do), in the event that such a context
exists, not all the records that the formula explicitly establishes will be considered, but only
those that also match the implicit conditions that arise from that context.

And it is important to make sure that the context doesn't invalidate the objective we were
looking for with the formula, as we saw in the last examples presented.

12

13

