
1 to 1 relationships between entities of reality



FLIGHT

SEAT

1

N

ATTRACTION SUPPLIER
N N

CATEGORY ATTRACTION
1 N

It has been seen that through transactions and their attributes we can
represent strong and weak 1 to N relationships between the actors in our
reality, as well as N to N relationships.

Now let's focus on 1 to 1 relationships.

In other videos, several cases of representation of 1 to 1 relationships have
been mentioned, so let's now review and unify what has already been seen
in this video.



Person

Customer Passenger Empolyee

Specialization

When considering the concept of subtypes, the case of attribute
specialization was represented.

In this scenario we have people's general information, such as their
Identifier, name and date of birth in the Person transaction, but it is also
necessary to record specific information corresponding to Customers,
Passengers and Employees, always bearing in mind that they are all
Persons.

Every Customer, Passenger, and Employee are Persons.

That is why the Customer, Passenger or Employee's identifier must
match exactly that of a Person to represent that they are Persons.

3



Specialization

This is achieved by defining the corresponding groups of subtypes.

By doing this, the attributes CustomerId, PassengerId and EmployeeId,
besides being the identifiers of the tables Customer, Passenger and
Employee respectively, will be, at the same time, foreign keys in the
table Person.

Therefore, when the user enters a value in the identifier of any of these
three transactions (Customer, Passenger or Employee), a record with
the same value as identifier will be searched for in the Person table.

4



Person

Customer

1

Passenger Empolyee

1 1

1

1

1

Specialization

This design then represents 1 to 1 relationships between the general
table and the one corresponding to each specialization.

5



Customer BankAccount
N1

FK

Unique index

Unique index

Now let's go over this other scenario. A travel agency needs to
associate with each customer the bank account opened to pay for the
services hired. In this way, a Customer has only one bank account, and
one bank account is associated with only one Customer.

But this design on display represents a 1 to N relationship, and
somehow we must then limit to 1.

This attribute, CustomerId, must not be repeated in BankAccount. In
other words, we have to make sure that two or more records with the
same value cannot exist for that attribute. This means that we want
CustomerId to be a candidate key on BankAccount.

How can it be done? By defining a Unique Index.

6



CK

Unique index

Customer BankAccount
11

Unique index

Candidate key

Remember that indexes are efficient ways to access data. A previous
video showed that GeneXus automatically creates the primary and
foreign indexes in each table, and that you can also create our own
indexes and indicate whether they accept duplicate values.

A unique index is an index that does not accept duplicate values. It is a
candidate key, an attribute, or set of attributes and, even though it is
not the primary key of the transaction, GeneXus will still control its
uniqueness automatically.

This design solution then represents that CustomerId is a foreign key in
BankAccount, and at the same time its value will not be repeated
because it will be automatically controlled by the definition of the
unique index.

In this way, a 1 to 1 relationship exists between Customer and
BankAccount.

7



training.genexus.com
wiki.genexus.com


