Two ways of returning a collection with a Data
Provider

GeneXus 16

Two ways of returning & collection with a Data Provider GeneXus

ForaDataProviderto load a collection of elements:

Name Type Descript.. Is Collection
=)-|4:] SDTCountries SDTCou...
=) ¢y~ SDTCountriesItem
e Id Id Id |
* Name Name Name [
® CountryAttractionsQuantity Numeric(4.0) Country ... |
o £

211121 B | Fikter

5 RankingCountries\WithAttractionsQty = X

* | Rules | Variables Name RankingCountriesWithAttractionsQty

- - Description Ranking Countries With Attractions Qty
4 SDTCountries Expose as Web Service False

- { Module/Folder Root Module

3 SDTCountriesItem

4 { Object Visibility Public

5 G /*1d value*/

6 Name = /*Name value*/ Infer Structure No

7 CountryAttractionsQuantity = /*Coun Output

8 } Collection False

9|l }

Data Providers are versatile objects that facilitate, with a declarative language, the loading of structures -
both simple items and collections of items.

As we saw in a previous video, when we want a Data Provider to load a collection of elements, we define a
variable based on a structured data type that is collection and then we drag that variable to the source of
the data provider. This causes its output to be set up automatically for loading that data type.

Two ways of returning & collection with a Data Provider GeneXus

We will now do the same forwhen the SDTis not collection

2 France -
5 Egypt 3
Objective: country ranking 4 Unfed States 2
3 China 2
6 Uruguay 1
' Bz ,

1) We create the SDTCountry that is not collection

@y SDTCountry* X %5 DataProviderCountries * X

Name Type Description Is Collection

5 ¢ [SDTCountry]
e Id a
* Name O
* Quantity Numeric(4.0) Quantity O

Now we will see the possibility for a Data Provider to return a collection of elements when the structured
data is not a collection.

The travel agency requested a report showing a ranking of countries with more tourist attractions. Our
example implies creating a collection of countries where each element is of a structured data type that
stores the data of only one country.

We first create a structured data type called SDTCountry, with an ID item, a Name item, and a Quantity
item where we store the number of tourist attractions for that country. We do not mark this data type as
collection, so it will be able to store the data of a single country.

Two ways of returning & collection with 8 Data Provider GeneXus

2) We define a variable based on SDTCountry and mark it as collection

& SDTCountry X .* CountriesRanking® X

Source | Layout | Rules | Conditions

{ame Type Is Collection
2 & | variables
+{ & | Standard Variables
. [= E

Then, in the procedure object that implements the ranking we define a CountriesCollection variable of the
SDTCountry type and mark it as collection.

Two ways of returning & collection with a Data Provider GeneXus

3) We create the data provider and drag the SDTCountry to the source

&~ SDTCountry X %3 DataProviderCountries * X

‘ } Rules | Variables
a o
1: SDTCountry
- { 2121 E | Fiter

ICIEN/*1d value*/

p = = Name DataProviderCountries
B Name = / Name Value / Description Data Provider Countries
: Quantity - /.Quantit)’ Value'/ Expose as Web Service False
6 } Module/Folder Root Module
Object Visibility Public
Infer Structure No
4) We set up the Output SDTCountry
Collection property as _

Collection Name DataProviderCountries

True

In order to obtain the data of all countries for defining the ranking, we create a data provider object called
DataProviderCountries; and then we drag the SDTCountry to the source of the data provider.

We will see that a code was automatically created. It reflects the structure of SDTCountry. However, we
don’t have any repetitive group, because there is no group defined by curly brackets inside another one.
So the definition that is written in the source will only be able to load the data of one country. But we want
to load the data of all the countries...

Fortunately, the data provider has a solution for this problem, since it builds the collection for us. To do
this we go to the data provider properties and in the Output group we set the Collection property with
True value.

Note that when we drag SDTCountry to the source of the data provider, the Output property is
automatically configured with the name of the SDT, which, as we know, stores a single element.

But when we assign the Collection property in True, we are indicating to the data provider that we want it
to return a collection of elements of the type of SDTCountry. We can also see that the Collection Name
property appears and that a name is automatically assigned to the collection.

Two ways of returning e collection with a Data Provider GeneXus

5) We complete the definition of the data provider...

o SDTCountry X g DataProviderCountries * X
Rules | Variables

1. SDTCountry

20 {

3 Id = Countryld

4 Name = CountryName

S Quantity = Count(AttractionName
6Ly Y ‘ ..and verify the navigation list

& SOTCowtry X . CoutriesRanking X T5 DstsProviderCounties X [T Nawigason View X

Pellomn Data Provider Report

:
o R

Levels
For Each Country (Line: 1)

-

To complete the definition, we write where we want the data provider to obtain the data, which in our
case is from the countries table. So we assign, to the right of the assignments, the attributes Countryld for
the Id, and CountryName for the Name. Then we assign a Count formula to Quantity for counting the
number of attractionsin the country.

Our data provider is then ready to be run.
When we right click on the name tab of the data provider and select View Navigation, we will see that

GeneXus specifies the object and shows the navigation report, where we can see that it will go over the
Country table to obtain the data of countries, as we wanted.

Two ways of returning & collection with a Data Provider GeneXus

6) We load the content of the collection variable

g SDTCountry X 4, * CountriesRanking™ X g DataProviderCountries

Layout | Rules | Conditions | Variables

v

1: &CountriesCollection = DataProviderCountries()

We now define what we need to load the contents of the CountriesCollection collection variable.
We must first add the &CountriesCollection variable to the source and assign to it DataProviderCountries.

When we invoke the data provider, it will run through all the records of the Country table and it will return
a loaded collection where each element is of the SDTCountry type. That collection will be stored in the
&CountriesCollection collection variable that we also defined as collection of elements of the same type.

Note that the syntax with which the data provider is invoked remains unchanged, except that the variable
that receives the result of the data provider, instead of being based on an SDT that is already collection
will be based on a simple SDT, and we make the variable a collection by marking the checkbox.

Main topic Section GeneXus

Insum...
We have twoways of making a data provider return a collection:

« By defining a collection SDT with the data provider configured automatically

£ RarkingCourtries\WithiaractionsGy * X

Rules | Variables

Name Type Is Collection

oTcorwe el
(1 SOTCountriesitem E‘-"< cuntriesItes Infer Structure No
e e g 14 - (R .
* Name Name O Nese = FoNane VOL® Output SDTCountries
¢ CountryAttractonsQuantity Numeric(4.0) 0 RN, .. Collection False

+ By definingan SDT thatis not collection and then configuring the data provider to set up the collection,
using the data provider’s properties.

g SOTCountry X TS DataProviderCountries * X

-
Ndmf ype Is Collection Rules | Variables Infer Structure No
= o (sorcounty] sorcountry
Locstobers T
cu . O [. e — —
- Country . .

oo

Quantity = Count(AttractionName)
Collection Name DataProviderCountries

® Quantity Numeric(4.0)

In sum, we have two ways of making a data provider return a collection of elements:

- by defining a structured data type, and when we drag it to the source of the data provider it is
automatically configured for returning a collection of that type,

- or by defining a structured data type that is not collection, and then configuring, through the properties
of the data provider, that the data provider itself define the collection.

GeneXus’

The power of doing.

Videos training.genexus.com
Documentation wiki.genexus.com
Certifications training.genexus.com/certifications

