

Transactions

What attribute names do we use?

GIK Naming convention

Product
{

ProductId* (PK)
ProductName (S)
ProductPrice (S)

}

Invoice
{

InvoiceId* (PK)
InvoiceDate (S)

Product
{

ProductId* (PK, FK)
ProductName (I)
ProductPrice (I)
InvoiceProductQuantity (S)

}

}

Entity + Category [+ Qualifier]

Transaction Design

Strong 1 – N

Each customer belongs to a country and a country has many customers

COUNTRY
1 N

CUSTOMER

Country
{

CountryId* (PK)
CountryName

}

Customer
{

CustomerId*
CustomerName
CountryId (FK)
CountryName

}

COUNTRY

CountryId*

CountryName

CUSTOMER

CustomerId*

CustomerName

CountryId

Weak 1 – N

Each customer has many phones, and each phone belongs to a single customer

Customer
{

CustomerId*
CustomerName
Phone
{

PhoneId*
PhoneType
PhoneNumber

}

}

key
FK

CUSTOMER

CustomerId*

CustomerName

CUSTOMERPHONE

CustomerId*

PhoneId*

PhoneType

PhoneNumber

Weak 1 – N

Each hospital has many rooms and each room belongs to a single hospital

Hospital
{

HospitalId*
HospitalName
Room
{

RoomId*
RoomName

}

}

key
FK

HOSPITAL

HospitalId*

HospitalName

HOSPITALROOM

HospitalId*

RoomId*

RoomName

N – N (M)

CAREER
N N

SUBJECT

Each degree program has many subjects and each subject can be included in
many degree programs

N – N: Option 1 of 4

Each degree program has many subjects and each subject can be included in
many degree programs

Subject
{

SubjectId*
SubjectName

}

Career
{

CareerId*
CareerName

}

CareerSubject
{

CareerId*
SubjectId*

}

SUBJECT

SubjectId*

SubjectName

CAREER

CareerId*

CareerName

CAREERSUBJ

ECT

CareerId*

SubjectId*

N – N: Option 1 – Generated tables

CareerId CareerName

1 Computer Science

2 Data Science for Health

SubjectId SubjectName

1 Computer Logic

2 Programming Fundamentals

CareerId SubjectId

1 1

1 2

2 2

CAREER

SUBJECT

CAREERSUBJECT

N

CAREER

SUBJECT

N

N – N: Option 2 of 4

Each degree program has many subjects and each subject can be included in
many degree programs

Subject
{

SubjectId*
SubjectName

}

Career
{

CareerId*
CareerName
Subject
{

SubjectId*
SubjectName

}

}

SUBJECT

SubjectId*

SubjectName

CAREER

CareerId*

CareerName

CAREERSUBJ

ECT

CareerId*

SubjectId*

N – N: Option 3 of 4

Each degree program has many subjects and each subject can be included in
many degree programs

Subject
{

SubjectId*
SubjectName
Career
{

CareerId*
CareerName

}

}

Career
{

CareerId*
CareerName

}

SUBJECT

SubjectId*

SubjectName

CAREER

CareerId*

CareerName

CAREERSUBJ

ECT

CareerId*

SubjectId*

N – N: Option 4 of 4

Each degree program has many subjects and each subject can be included in
many degree programs

Subject
{

SubjectId*
SubjectName
Career
{

CareerId*
CareerName

}

}

Career
{

CareerId*
CareerName
Subject
{

SubjectId*
SubjectName

}

}

SUBJECT

SubjectId*

SubjectName

CAREERSUBJ

ECT

CareerId*

SubjectId*

CAREER

CareerId*

CareerName

1 - 1

Each course is taught in a classroom, and this classroom can only
be used to teach this course

Room
{

RoomId*
RoomName

}

Course
{

CourseId*
CourseName
RoomId
RoomName

}

Unique index

ROOM
1 N

COURSE

1

ROOM

RoomId*

RoomName

COURSE

CourseId*

CourseName

RoomId

1
2

3

Creating an index

Normalization

GeneXus normalize tables in Third Normal Form (3NF)

• Inferred attributes in a transaction, are not included in the generated table

Country
{

CountryId* (PK)

CountryName
ContinentId (FK)

ContinentName (INF)

}

Customer
{

CustomerId* (PK)

CustomerName
CountryId (FK)

CountryName (INF)

ContinentId (INF)

ContinentName (INF)

}

Continent
{

ContinentId* (PK)

ContinentName
}

CUSTOMER

CustomerId*

CustomerName

CountryId

COUNTRY

CountryId*

CountryName

ContinentId

CONTINENT

ContinentId*

ContinentName

Referential Integrity

Referential Integrity

Country
{

CountryId* (PK)

CountryName
}

Customer
{

CustomerId*
CustomerName
CountryId (FK)

CountryName
}

CountryId CountryName

1 URUGUAY

2 ARGENTINA

The record is
not inserted

CustomerId CustomerName CountryId

1 ANA 1

2 PEDRO 2

3 LUIS 2

4 JOSE 3

Referential Integrity

Country
{

CountryId* (PK)

CountryName
}

Customer
{

CustomerId*
CustomerName
CountryId (FK)

CountryName
}

The register is not deleted

CountryId CountryName

1 URUGUAY

2 ARGENTINA

CustomerId CustomerName CountryId

1 ANA 1

2 PEDRO 2

3 LUIS 2

4 JOSE 3

Base Table and Extended Table

• Base table

Any table in the database where we may be working at a given moment.

• Extended table

For a given table, its extended table is a concept that allows us to consider all the
information that we can access from it, using its foreign keys.

It is the set of attributes of the table itself + all the attributes of the tables with which it has
an N to 1 relation, either directly or indirectly.

Extended table

Base table

Example

Product
{

ProductId*
ProductName
ProductPrice

}

Invoice
{

InvoiceId*
InvoiceDate
CustomerId
CustomerName
Product
{

ProductId*
ProductName
ProductPrice
InvoiceProductQuantity

}

}

Customer
{

CustomerId*
CustomerName

}

Table diagram
(Bachman diagram)

Example: Invoice Extended Table

BASE TABLE

Example: Customer Extended Table

BASE TABLE

Example: InvoiceProduct Extended Table

BASE TABLE

Example: Product Extended Table

BASE TABLE

Subtypes

Multiple references:
For every flight, the departure and arrival airports must be saved

Airport
{

AirportId*
AirportName

}

Flight
{

FlightId*
FlightDate
AirportId
AirportName
AirportId
AirportName

}

Error due to
duplicated attribute
names

Solution 1 of 3: create two subtype groups, one for the departure airport and
another for the arrival airport

Airport
{

AirportId*
AirportName

}

Flight
{

FlightId*
FlightDate
DepartureAirportId
DepartureAirportName
ArrivalAirportId
ArrivalAirportName

}

Subtype group: DepartureAirport

Subtype group: ArrivalAirport

Solution 2 of 3: create one subtype group for the departure airport only

Airport
{

AirportId*
AirportName

}

Flight
{

FlightId*
FlightDate
DepartureAirportId
DepartureAirportName
AirportId
AirportName

}

Subtype group: DepartureAirport

Solution 3 of 3: create one subtype group for the arrival airport only

Airport
{

AirportId*
AirportName

}

Flight
{

FlightId*
FlightDate
AirportId
AirportName
ArrivalAirportId
ArrivalAirportName

}

Subtype group: ArrivalAirport

Multiple references:
In addition to the customer’s country, the country where the invoice was issued must
also be saved

Country
{

CountryId*
CountryName

}

Invoice
{

InvoiceId*
InvoiceDate
CustomerId
CustomerName
CountryId
CountryName
InvoiceCountryId
InvoiceCountryName

}

Customer
{

CustomerId*
CustomerName
CountryId
CountryName

}

Subtype group: InvoiceCountry

Inferred attributes

Multiple references: problem

Subject
{

SubjectId*
SubjectName
TeacherId
TeacherName
TeacherId

TeacherName

}

Teacher
{

TeacherId*
TeacherName

}

Error due to
duplicated attribute
names

Permanent teacher

Substitute teacher

Multiple references: solution

Subject
{

SubjectId*
SubjectName
SubjectPermanentTeacherId
SubjectPermanentTeacherName
SubjectSubstituteTeacherId
SubjectSubstituteTeacherName

}

Teacher
{

TeacherId*
TeacherName

}Permanent teacher

Substitute teacher

Multiple references: problem

Subject
{

SubjectId*
SubjectName

}

Teacher
{

TeacherId*
TeacherName
SubjectId
SubjectName

}

Exam
{

ExamId*
ExamDate
SubjectId
SubjectName
Teacher
{

TeacherId*
TeacherName
SubjectId
SubjectName

}

}

Error due to
duplicated attribute
names

Inferred
attributes

Multiple references: solution

Subject
{

SubjectId*
SubjectName

}

Teacher
{

TeacherId*
TeacherName
SubjectId
SubjectName

}

Exam
{

Examld*
ExamDate
ExamSubjectId
ExamSubjectName
Teacher
{

TeacherId*
TeacherName
SubjectId
SubjectName

}

}

Subtype group: ExamSubject

Inferred attributes

Recursive subtypes

Employee
{

EmployeeId*
EmployeeName
EmployeeManagerId
EmployeeManagerName

}

Subtype group: EmployeeManager

Specialization

ADMINISTRATIVE TEACHER

PERSON
Person
{

PersonId*
PersonName

}

Administrative
{

AdministrativeId*
AdministrativeName
AdministrativeLanguage

}

Teacher
{

TeacherId*
TeacherName
TeacherTitle

}

Correct:

More inf attrbs

Show tables

Rules

Rules

Error(“Enter the student name”) if
StudentName.isEmpty();

Msg(“The address is empty”) if
StudentAddress.isEmpty();

Default(StudentAddedDate, &Today);

Noaccept(StudentAddedDate);

Rules

Insert

update

delete

display

Boolean functions

ProductStock = ProductStock - 100 if insert;

ProductStock = ProductStock + 100 if delete;

Rules

Add(500, ProductStock);

Subtract(InvoiceProductQuantity, ProductStock);

ProductStock = ProductStock - 100;

Rules

Serial(CityId, CountryLastLine, 1);

Parm(attribute1, &variable1, ….);

Variable: Space in memory that has a name and data type

it can save. It is referenced using “&.”

Triggering Moments

Browser Server Database

Commit

In single-level transactions: In two-level transactions:

Rule triggering moments

In the
server,
after
pressing
Confirm

On BeforeValidate

VALIDATION of the header

On AfterValidate

On BeforeInsert/BeforeUpdate/BeforeDelete

SAVING the header

On AfterInsert/AfterUpdate/AfterDelete

On BeforeValidate

VALIDATION of the line

On AfterValidate

OnBeforeInsert/BeforeUpdate/BeforeDelete

SAVING the line

On AfterInsert/AfterUpdate/AfterDelete

On AferLevel Level Line attribute

On BeforeComplete

COMMIT

On AfterComplete

For
each
line

On BeforeValidate

VALIDATION

On AfterValidate

On BeforeInsert/BeforeUpdate/ BeforeDelete

SAVING

On AfterInsert/AfterUpdate/ AfterDelete

On BeforeComplete

COMMIT

On AfterComplete

Rule triggering moments

It is not correct because it is
invoked BEFORE saving and
the table will not reflect the
changes made to the
customer.

VALIDATION
On AfterValidate

SAVING
On AfterInsert / On AfterUpdate / On AfterDelete

PrintCustomer(CustomerId) on AfterValidate; Is it correct or not?

Rule triggering moments

It is
correct!

VALIDATION
On Aftervalidate

SAVING
On AfterInsert / On AfterUpdate / On AfterDelete

PrintCustomer(CustomerId) on AfterInsert, AfterUpdate; Is it correct or not?

Rule triggering moments

It is not correct because it is
invoked AFTER the deletion and
the customer will not be found
with that ID in the table.

VALIDATION
On Aftervalidate

SAVING
On AfterInsert / On AfterUpdate / On AfterDelete

PrintCustomer(CustomerId) on AfterDelete; Is it correct or not?

Rule triggering moments

In two-level transactions:

On BeforeValidate

VALIDATION of the header

On AfterValidate

On BeforeInsert/BeforeUpdate/BeforeDelete

SAVING the header

On AfterInsert/AfterUpdate/AfterDelete

On BeforeValidate

VALIDATION of the line

On AfterValidate

OnBeforeInsert/BeforeUpdate/BeforeDelete

SAVING the line

On AfterInsert/AfterUpdate/AfterDelete

On AferLevel Level Line attribute

On BeforeComplete

COMMIT

On AfterComplete

For

each

line

< 8

Rule triggering moments

In two-level transactions:

On BeforeValidate

VALIDATION of the header

On AfterValidate

On BeforeInsert/BeforeUpdate/BeforeDelete

SAVING the header

On AfterInsert/AfterUpdate/AfterDelete

On BeforeValidate

VALIDATION of the line

On AfterValidate

OnBeforeInsert/BeforeUpdate/BeforeDelete

SAVING the line

On AfterInsert/AfterUpdate/AfterDelete

On AfterLevel Level Line attribute

On BeforeComplete

COMMIT

On AfterComplete

For

each

line

✓on AfterComplete: Right
after Commit is performed
in the database.

Examples

PrintInvoiceDetail(InvoiceId) on AfterComplete;Invoice
{

InvoiceId*
InvoiceDate

Product
{

ProductId*
ProductName
ProductPrice
InvoiceProductQuantity

}

}

ProductControl(ProductId) on BeforeInsert;

ProductControl(ProductId) on AfterComplete;

Can I assign a value to an attribute on
AfterInsert? NO

Determine if is it correct or not:

ProductPrice = 100 on BeforeInsert;

ProductPrice = 100 on BeforeComplete;

ProductPrice = 100 on AfterInsert;

ProductPrice = 100 on AfterValidate;

Product
{

ProductId*
ProductName
ProductPrice

}

Value assignment examples

On BeforeValidate

VALIDATION

On AfterValidate

On BeforeInsert/BeforeUpdate/

BeforeDelete

SAVING

On AfterInsert/AfterUpdate/ AfterDelete

On BeforeComplete

COMMIT

On AfterComplete

Determine if is it correct or not:

Formulas

Sum(InvoiceProductAmount)

Global Formulas Invoice
{

InvoiceId*
InvoiceDate
InvoiceAmount
Product
{

ProductId*
ProductName
ProductPrice
InvoiceProductQuantity
InvoiceLineAmount

}

}

Product
{

ProductId*
ProductName
ProductPrice

}

ProductPrice*InvoiceProductQuantity*0.9 if ProductId = 1;
ProductPrice*InvoiceProductQuantity*0.8 if ProductId = 3;
ProductPrice*InvoiceProductQuantity otherwise;

• They are known
throughout the KB

• It’s a calculation associated with
an attribute in a transaction “Virtual”

attributes
(not saved
in the DB)

Country
{

CountryId*
CountryName
CountryCustomersQuantity

}

Customer
{

CustomerId*
CustomerName
CountryId
CountryName

}

Will this formula count the customers by country or the total number of
customers?

Count(CustomerName)

It will count the customers by country because GeneXus applies an
automatic filter by the common attribute (CountryId).

Invoice
{

InvoiceId*
InvoiceDate
InvoiceType
CustomerId
CustomerName
InvoiceAmount

}

Customer
{

CustomerId*
CustomerName
CustomerTotal

}
credit

cash

Calculation
condition

Sum(InvoiceAmount, InvoiceType=InvoiceType.Credit)

If CustomerId = 3 Triggering
condition

Domain that
provides two
Enum Values

Inline Formulas
• They are only known in the object in which they have been

defined

Requirement: A list of countries with the number of attractions in each one of them

Countries List

Country Quantity

Argentina 2

Uruguay 3

Paraguay 1

United States 5

COUNTRY ATTRACTION
1 N

Country
{

CountryId*
CountryName

}

Attraction
{

AttractionId*
AttractionName
CountryId
CountryName

}

• They are formulas defined in the code section of an object

Base table of the For Each command: COUNTRY

Table read by the formula: ATTRACTION

Will this formula count the attractions by country or the total number of
attractions?

It will count the attractions by country because it is applied an automatic
filter by the common attribute CountryId (both tables are related).

Inline Formula in the code of a Procedure object

For Each command

Base Transaction

Flight
{

FlightId*
FlightDate

Seat
{

FlightSeatId*
FlightSeatChar

}
}

For each Flight

Endfor

For each Flight.Seat

Endfor

Base Transaction

Name of the transaction
whose associated
physical table is to be run
through

For each Customer order (CustomerName)

Endfor

For each Customer order CustomerName

Endfor

Order

Customer
{

CustomerId*
CustomerName

}

Requirement: A list of all customers in alphabetical
order by name.

Requirement: A list of all customers in descending order
by name.

Order

GeneXus allows ordering by the value of an attribute not included in the table being run
through, but in its extended table.

Filters

Flight
{

FlightId*
FlightDate

Seat
{

FlightSeatId*
FlightSeatChar

}

}

For each Flight
Where FlightDate = Today()

Endfor

For each Flight.Seat
Where FlightId = 1

Endfor

Filters

Customer
{

CustomerId*
CustomerName
CustomerAddress

}

For each Customer order CustomerName
Where CustomerName >= &NameFrom

Endfor

Index

The query has been optimized!

For Each command syntax

Nested For Each commands + Different base table + Tables NOT related =
CARTESIAN PRODUCT

Room
{

RoomId*
RoomName

}

Country
{

CountryId*
CountryName

}

For each Country
Print Country

For each Room
Print Room

Endfor

Endfor

Cartesian Product 1 - Brazil
RoomA
RoomB
RoomC

2 -Uruguay
RoomA
RoomB
RoomC

3 - Argentina
RoomA
RoomB
RoomC

4 - United States
RoomA
RoomB
RoomC

Nested For Each commands + Different base table + Related tables = JOIN

For each Country
Print Country

For each Customer
Print Customer

Endfor

Endfor

Customer
{

CustomerId*
CustomerName
CountryId
CountryName

}

Country
{

CountryId*
CountryName

}

Join

1

N

1 - Brazil
LUIS
JORGE

2 - Uruguay

3 - Argentina

4 - United States
ANA

Nested For each commands + Same base table + Related tables = CONTROL BREAK

Customer
{

CustomerId*
CustomerName
CountryId
CountryName

}

Country
{

CountryId*
CountryName

}

For each Customer order CountryId
Print Country

For each Customer
Print Customer

Endfor

Endfor

Control Break

1 - Brazil
LUIS
JORGE

4 - United States
ANA

Summary

Cartesian Product Join Control Break

For each Country
Print Country

For each Room
Print Room

Endfor

Endfor

Different tables,
with no relation
between them

For each Country
Print Country

For each Customer
Print Customer

Endfor

Endfor

Different tables
which are
related

Same table,
grouped with order

For each Customer order CountryId
Print Country

For each Customer
Print Customer

Endfor

Endfor

Summary

Cartesian Product Join Control Break

1 - Brazil
LUIS
JORGE

2 - Uruguay

3 - Argentina

4 - United States
ANA

1 - Brazil
LUIS
JORGE

4 - United States
ANA

“All countries and their
customers, regardless if they
have customers or not”

“Only those countries that
have customers”

“Both entities are not related;
show all possibilities for each
country”

1 - Brazil
RoomA
RoomB
RoomC

2 -Uruguay
RoomA
RoomB
RoomC

3 - Argentina
RoomA
RoomB
RoomC

Communication between objects

Example: sending parameters

Customer
{

CustomerId*
CustomerName
CountryId
CountryName

}

Country
{

CountryId*
CountryName

}

Parm(in: &CountryId);

For each Customer
Where CountryId = &CountryId

Endfor

CustomerList

For example, in the Rules of the Country trn:

CustomerList(CountryId) on AfterComplete;

Variable
Explicit filter

Example: sending parameters

Customer
{

CustomerId*
CustomerName
CountryId
CountryName

}

Country
{

CountryId*
CountryName

}

For example, in the Rules of the Country trn :

CustomerList(CountryId) on AfterComplete;

Parm(in: CountryId);

For each Customer
Where CountryId = &CountryId

Endfor

CustomerList

Attribute
Implicit filter

Example: returning a value

Customer
(

CustomerId*
CustomerName
CountryId
CountryName

)

Country
(

CountryId*
CountryName

)

Parm(in: &CustomerId, out: &Control);

For each Customer
Where CustomerId = &CustomerId

&Control = True

Endfor

CustomerControl

For example, in the Rules of the Customer trn:

&Control = CustomerControl(CustomerId);

Structured Data Types

1

John Smith

5th. Avenue 1234
customer

1
John Smith
5th. Avenue 1234

3 variables

One variable

Concept

customer

&OneCustomer: SDTCustomer

Definition

Structured Data Type object

Data Providers

One customer

Id: 1
Name: John Smith
Address: 5th. Ave.

SDTCustomer
s

Customer Collection

Id: 2
Name: Susan
Brown
Address: 7th.Ave.

Id: 3
Name: Robert Hill
Address: 81th. St..

Id: 4
Name: Peter Jensen
Address: St,Paul Rd.

Id: 1

Name: John Smith

Address: 5th. Avenue 1234

Country Number of attractions

BRAZIL 4

ARGENTINA 3

URUGUAY 2

CHILE 1

….

…

Example: Ranking of attractions per country

Id: 1

Name: URUGUAY

AttractionQuantity: 2

SDTCountries

A collection of countries

Example: Ranking of attractions per country

Id: 2

Name: ARGENTINA

AttractionQuantity: 3

Id: 3

Name: BRAZIL

AttractionQuantity: 4

Id: 4

Name: CHILE

AttractionQuantity: 1

Example: Ranking of attractions per country

Country
{

CountryId*
CountryName

}

Attraction
{

AttractionId*
AttractionName
CountryId
CountryName

}

Where…

Example: Ranking of attractions per country

Example: Ranking of attractions per country

Country
{

CountryId*
CountryName

}

Attraction
{

AttractionId*
AttractionName
CountryId
CountryName

}

Country Number of attractions

BRAZIL 4

ARGENTINA 3

URUGUAY 2

CHILE 1

Collection Variables

&numbers

&Countries

Business Components

Concept: special data type based on a transaction

Concept: special data type based on a transaction

Examples: insertion and modification

Category
{

CategoryId*
CategoryName

}

Insert

Update

Example: deletion

Category
{

CategoryId*
CategoryName

}

Delete

Insert and Update Methods

Category
{

CategoryId*
CategoryName

}

Insert

Update

InsertOrUpdate Method

Category
{

CategoryId*
CategoryName

}

InsertOrUpdate

Insert / Update in two-level transaction Insert

Insert / Update in two-level transaction Insert

Insert / Update in two-level transaction Insert

AttractionId

AttractionName

CountryId

CityId

CategoryId

AttractionPhoto

BC

Attraction

BC

Attraction

BC

Attraction

&attractions

&attractions.Insert()
&attractions.InsertOrUpdate()

Methods in Collections

&attractions.Update()

BC Attraction

Using the methods Insert, Update and InsertOrUpdate is recommended because:

- When the Load and Save methods are used to make changes, the database is accessed
twice, which reduces performance. With the Update or InsertOrUpdate methods, the
database is accessed only once.

- The names of these new methods are self-explanatory about their purpose.

Insert / Update / InsertOrUpdate

Error handling working with BC

For each Business Component variable, a

collection is loaded in memory with all the

warning or error messages resulting from

operations.

Data Population
Transaction

Initializing data automatically

GeneXus makes it easy to define the data used to populate the physical tables that
are created associated with transactions, so as to avoid resorting to other means to
load data.

Initializing data

The CategoryId is not loaded
because it has been set as autonumbered

Initializing data: Read-only

Country
{

CountryId*
CountryName

}

Data Population
Business Components and Data Providers

Example

Country
{

CountryId*
CountryName

}

Autonumber = True

Data Population with Procedures

New / For Each / Delete Commands

- Control referential integrity

Notes

- Trigger the rules declared in the transaction

Even though the following commands allow inserting, updating and deleting data from the database,

using a Business Component is recommended because they:

The commands New / For Each / Delete allow inserting, updating and deleting data from the
database, but only can be used in Procedures

Insertion – NEW Command

Category
{

CategoryId*
CategoryName

}

If the attribute is autonumbered it
doesn’t have to be inserted

Modification / FOR EACH Command

Category
{

CategoryId*
CategoryName

}

Country
{

CountryId*
CountryName
City
{

CityId*
CityName

}
}

Attraction
{

AttractionId*
AttractionName
CategoryId
CategoryName
CountryId
CountryName
CityId
CitlyName

}

Deletion – DELETE Command

Attraction
{

AttractionId*
AttractionName
CategoryId
CategoryName
CountryId
CountryName
CityId
CitlyName

}

Dynamic Transactions

Dynamic Transactions

1. Data Provider: True

2. Used to: Retrieve data

3. Update Policy: - Read Only

- Updatable

DP
Tables ViewTransaction

• In the Data Provider, we need to indicate what data we want to retrieve

• A dynamic transaction can be referenced as Base Trn

Dynamic Transactions to retrieve data

A company sells products and provides services.
A list is to be issued containing everything that the company offers in alphabetical
order.

Example 1: Data join

Example: DataProvider generated

Example: DataProvider

Example: SaleItem specification

Example: PDF list

• Products → stock > 1000

• Services → < 10 contrataciones

Example 2: Modeling reality

Dynamic Transactions to update data

How do we update data if we don’t have a table associated with
the transaction?

The developer will have to program the events Insert, Update and
Delete.

Invoice

{

InvoiceId*

InvoiceDate

InvoiceTotal

}

Receipt

{

ReceiptId*

ReceiptDate

ReceiptTotal

}

Document

{

DocumentType*

DocumentID*

DocumentDate

DocumentAmount

}

Movement

{

MovementId*

DocumentType

DocumentID

DocumentDate

DocumentAmount

}

or

Dynamic Transaction
It doesn’t generate

a table

Invoice

Receipt

Domain that offers
Two Enum Values

Document

{

DocumentType*

DocumentID*

DocumentDate

DocumentAmount

}

Events

Event Insert
If DocumentType = “Invoice”

&invoice = new()
&invoice.InvoiceId = DocumentID
&invoice.InvoiceDate = DocumentDate
&invoce.InvoiceTotal = DocumentAmount
&inovice.Insert()

else
&receipt = new()
&receipt.ReceiptId = DocumentId
&receipt.ReceiptDate = DocumentDate
&receipt.ReceiptTotal = DocumentAmount
&receipt.Insert()

endif
endevent

&invoice → BC
Invoice

&receipt → BC
Receipt

Example 3: Using Dynamic Transactions to update data

Transactional Integrity

Concepts

•

•

•

•

Customizing LUWs

Header 1 record

Line 1-1 record

Line 1-2 record

Transaction “A”

Line 1-n record

Procedure “B”

Record 1

Record 2

Record m
…

…

COMMIT

COMMIT

calls

B (parm1, … , parmn) on BeforeComplete;

Customizing LUWs

Header 1 record

Line 1-1 record

Line 1-2 record

Transaction “A”

Line 1-n record

Procedure “B”

Record 1

Record 2

Record m

…
…

COMMIT
COMMIT

calls

Customizing LUWs

Header record

Line 1 record
… UTL1

UTL2

Transaction “A”

Transacción “B”

≠

Line n record

Proc “P1”

Record 1
…

Record n

Proc “Pn”

Record 1
…

Record n

Header record

Line 1 record

Line m record

Proc “Q1”

Record 1

…

Record m

…

Proc “Qn”

Record 1
…

Record m

…

COMMIT

COMMIT

Transaction may only commit its records and those of procedures in a chain of invocations: NOT the records of another

transaction:

Web Panels

Variables: input
(not read-only)

Web Panel without a grid, with variables in the form

Web Panel without a grid, with attributes in the form

Parm(in: AttractionId);

Only one record is loaded

Grid: WITH BASE TABLE

Base Transaction

Order

Grid: WITH BASE TABLE

Filter conditions

Many conditions

Events

Start

Refresh

Load

First time

User / Control
Event

Load event in Web Panel WITH base table

LOAD Event

“N times, as
many as
records
existing in the
table run
through.”

Another example

Country
{

CountryId*
CountryName

}

Attraction
{

AttractionId*
AttractionName
CountryId
CountryName

}

Event Load
&Quantity = Count(AttractionName)

endevent

Refresh event

Refresh (once)

Load (2 times)

Attributes in the Grid

Web Panels
without Base Table

Web Panels WITHOUT BASE TABLE

LOAD Event
“Once”

Web Panels
Multiple Grids

Multiple grids

PARALLEL NESTED

FreeStyleGrid

Independent navigation Navigation of related tables

Types of Web Panels

Types of Web Panels

Web page (default) Master pageComponent

Design Systems

Master Page

Theme

Responsive sizes

Controls

Base styles

Stencils

Patterns

e.g. Header / footer

Classes

Responsive tables

User control objects

CSS libraries

Design components

Design / behaviour

RWD

E

Design Systems

Stencils

Object that

Design component

Responsive Design

Responsive Web design

Responsive Web design

Patterns

Automatically generated by GeneXus

Dynamics

Transaction
structure

Pattern
instance

Generated
objects

Example: New attribute CountryFlag

How are all instances initialized?

In Country…

General Settings

Adding variables or attributes

Adding actions

v

Adding actions

Deleting the pattern

Delete

Dynamic Queries
Query Object

France

Paris (3)

Versailles (1)

View the number of attractions of France, by city

View the number of attractions of France, by city

Country
{

CountryId*
CountryName
City
{

CityId*
CityName

}
}

Attraction
{

AttractionId*
AttractionName
CountryId
CountryName
CityId
CityName

}

Preview

Query viewer

GeneXus Server

Send Knowledge Base to GeneXus Server

Team Development

Commit

Partial commit

Knowledge Manager / Team Development

Update

Partial selection

History

Create KB from GeneXus Server

File / New / Knowledge Base from Server

Select KB from server

Example

Mike

Peter

Example

Commit

Update

Peter

Mike

Example

Commit

Peter

Mike

Web console

Execution environments

Generators and databases

Working with more than one environment

Knowledge Base versioning

Versions tree

Frozen version

Development version

Development version

To synchronize (merge) two development versions:

To compare two versions:

1)

2)

Security with GAM

AUTHENTICATION AUTHORIZATION

Enabling the GeneXus Access Manager

Importing objects from GAM

Selecting integretind security level

Accesing to GAM backend (GAM Home object)

Testing

Objects to generate unit tests and interface tests

Isolated testing of:
- Procedures
- Data Providers
- Business Components

Allows simulating
user actions in the
browser

Unit Test

•

•

•

Explorer Test

Interface Test: GXTest

Interface Test

(GXTest license required)

Deployment

Automatic deployment with F6

Design ProductionPrototype

F6

F5

Validate Prepare Transfer Publish

Application Deployment Tool

Main objects

Application Deployment Tool

Local deployment (packages creation): Deployment to PAAS (Platform As A Service) servers

Building the environment in the Cloud

Automatic deployment

Deployment management

Maximizing application uptime

Deployment Services

Integration

External Objecs

Client aplications

Web services

WSDL OpenApi

RESTSOAP

OData service

DB

OData

Artificial Intelligence Module IBM Watson

Microsoft Cognitive Services

SAP Leonardo

Google Cloud Services

Amazon Web Services

Chatbots: Conversational Flow object

209

Smart Devices

Applying a Pattern to a Transaction

Applying a Pattern to a Transaction

Set its property Main program = True, and right-click
and Run over the object:

Applying a Pattern to a Transaction

Right-click and Run:

Select 1 country

GENERAL PLACE

Applying a Pattern to a Transaction

For each place, in addition to its name, we want to see its geolocation.

Access Menu: Menu for Smart Devices

Creation: Add action…

After pressing F5…

Videos training.genexus.com

Documentation wiki.genexus.com

Certifications training.genexus.com/certifications

