
Here, we will consider some GeneXus objects that prove useful at the time of encapsulating functionalities and

organizing objects in our knowledge base.



Let’s consider modules to start with.





Modules are GeneXus objects acting as containers that enable us to group objects from our KB and facilitate the

understanding thereof, as well as its maintenance and the integration of objects with other KBs.

When we create a knowledge base, the Root Module is then created and, by default, all the objects we create

remain in that module.

Modules and folders aid us in organizing objects. However there are conceptual differences between modules and

folders. Modules help in encapsulating and modularizing parts of the KB, with the possibility of determining which

objects are visible from other objects and which are not, as we will see later.

Folders, on the other hand, act as containers that only help in organizing objects by separating them according to

specific criteria. Along with modules, they create a hierarchical tree where the root is always a module as in the

case of the Root Module. We can see this in KB Explorer.

Modules may have module children, but folders may not have modules as their children.

As a general rule, we could say that it is possible to use modules to encapsulate and folders for organizing objects

within the module.

In order to add an object to a module, we could drag it to the module in KB Explorer, or otherwise click the right

button on the module and then New Object, or otherwise change the value of the object’s Module/Folder property.



Packed modules that have been shared with us may be viewed through the Knowledge Manager / Manage

Module References menu.

For each module available, we can see its information to decide whether we will install it in our KB or not. If we do,

it will be saved under the References node of KB Explorer, as opposed to objects we create, which are saved in

the Root Module by default.

We cannot modify the objects of these modules (we view them as Read-Only) which are already compiled. So,

when we press F5, it is not necessary to specify or generate them and so on.

However, we will be able to use them freely from the objects in our application, using all the functionalities they

have available.

Any member of the community may create, share or even sell his/her modules through Marketplace.

One of these is the GeneXus module, also known as GeneXus Core.



The GeneXus module is distributed automatically and installed in all KBs. And as any external mode of our

application, we will find it in the References node.

It comprises a series of sub-modules that contain a set of APIs with their corresponding domains and SDTs, which

enable us to interact with the various technologies, devices, sensors, applications and so on.

These APIs are implemented as External Objects, which we will see next.



You will find further information on the module object at this wiki link:

https://wiki.genexus.com/commwiki/servlet/wiki?22411



Let’s now see what External Objects are. 

External objects are GeneXus objects that enable us access to external resources of our KB as if they were 

another object in the KB.

That’s why they are increasingly more frequent and important in our web and mobile device applications. Let’s 

now see how to use them. 



We may import different types of resources into our KB. For instance, when we have something programmed in

.NET we may generate a DLL and import it into the KB as an external object. Then, from our app, we may invoke

the functions included in the DLL as if they were procedures programmed in GeneXus.

The same happens with classes created in Java.

We may also import resources stores in other external sources, like Java Beans programs, procedures stored in a

database, webservices (both SOAP and REST), SAP modules, JSON files generated by any application, or XML

schema.

GeneXus also provides a set of External Objects that are located in the RootModule or in the GeneXus module

that enable us access to a variety of resources such as APIs for interacting with the hardware, or native

applications of mobile devices, or APIs to have access to the server, to events, or to Windows applications such

as the notepad, as well as to external sites for using maps and social networks, among other things.

There are also external objects published on the GeneXus Marketplace that we may include in our application.



The best way to create an external object is to use a wizard. If we go to the Tools menu and select Application

Integration, we will see the various resources to be imported, and a specific wizard will be executed for that

resource. Upon finalizing the wizard, the external object created will be automatically associated with the resource.

All the properties of the external object will be adjusted in accordance with the type or resources that has been

imported.

We may also create an external object with New Object, just like with any other GeneXus object, though in that

case, we will need to set up its properties, methods and events manually.



Once we have created the external object based on the properties that correspond to the external object that we

wish to use, it will be available just like any other data type in the knowledge base.

We use it in the same way as any other type of extended data, by defining a variable of that type and then calling

the methods and/or setting up the properties we need.

You will find further information on external objects if you go to this link on screen:

https://wiki.genexus.com/commwiki/servlet/wiki?5669




