

In addition to all the automatic controls included by GeneXus in the applications it generates, sometimes users

request that we make some specific controls.

In transactions, the rules that must be complied with, or the controls that we are asked to validate, are defined in

the Rules section.

If, for example, a requirement is not to allow storing of clients without a name... we have a rule called Error

that will enable us to avoid that.

We type “Error”, open brackets and between single quotation marks we enter the text we want to have displayed

in the event that the user tries to leave a client name blank... we close brackets... and now we only have to

indicate the condition that must be met for the text to be displayed.

The condition is that the CustomerName attribute is empty… so we write “if CustomerName”, period, and here

we select: IsEmpty.

All the rules we state must end with a semicolon, so we include it.

We save... and press F5 to see this rule at runtime.

We run the Customer transaction, and if we leave the client name blank and leave the field, the text we defined is

displayed.

The Error rule doesn’t allow us to move on if the condition continues to be met… so, the user either enters

a client name to be able to continue or cancels.

Note that if we try to click on the client’s surname, the message stays on screen because the condition continues

to be met.

We enter a name... and see that we can continue entering the rest of the client's details.

[DEMO: https://youtu.be/dhXcPuqxEPs]

If another requirement involved preventing the client’s surname from being left blank, a similar rule would also

have to be stated. So, we copy and paste this rule definition... replace “name” with lastname and change the

attribute involved.

We press F5... run Customer... and leave the client's name empty... the error associated with a blank name is

displayed... we enter Paul... and try to leave the surname empty.... the error associated with a blank surname is

displayed.

https://youtu.be/dhXcPuqxEPs

There is another rule whose syntax is very similar to that of the Error rule… it is called Message… and the only

difference with Error is that if the condition is met, the message is displayed as a notice or warning, and the user

can continue working. That is to say, it doesn’t prevent users from moving on, as does the Error rule.

If, for example, we want to inform that the client's phone number has been left blank without forcing the user to

enter it, we can create a Message rule, open brackets, enter the text between single (or double) quotation

marks... 'The phone is empty’. We close brackets... and next we define the condition for the rule to be executed:

“if CustomerPhone”… period… IsEmpty. And we type a semicolon to complete the rule definition.

[DEMO: https://youtu.be/iN5j24xKqNo]

We press F5 to try this functionality...

Note that if we leave the phone blank and try to leave the field, the message that we created is displayed. In this

case it is orange and we can move on.

https://youtu.be/iN5j24xKqNo

Let’s suppose that our users at the travel agency have told us that they are interested in storing the date on

which each customer is added.

So, we need to create a new attribute in the Customer transaction to store this date. We enter

CustomerAddedDate … of Date type… and now we would only have to automatically assign it today’s date.

We go to the Rules section... and select a rule called Default.

This rule allows us to start an attribute or variable with a value.

In this way, the syntax of the Default rule has been inserted. Now we will replace the attribute between brackets

with the attribute that we want to initialize, which is CustomerAddedDate, and we will also add the value that we

want it to use, which is today's date.

“Ampersand today” is a predefined variable that always has today’s date loaded in order to use it.

A variable is one space in memory with an associated symbolic name and a data type that can be stored (text,

numbers, dates, etc.). This variable has a certain value stored. In general, the variable name is used to make

reference to this stored value.

An attribute, on the other hand, is one value physically stored in the database.

Most GeneXus objects allow defining variables. These variables are local, which means that they can only be

used within each object. To make reference to a variable, the “&” symbol must be used. For example, &Total.

If we open the Variables selector within a transaction we will see that a set of variables has already been defined.

They are system variables, such as for example, &Today, &Mode, etc. In particular, the &Today variable allows

obtaining the current date taken from the system.

In addition to these system variables, the developer can also create his/her own variables (user variables). For

example, a MyDate variable of Date type.

When creating variables, these options are available:

1. Create them through the Variables selector included in all GeneXus objects, as we've just done.

2. Create them at the time they will be used in the place they are needed. For example: type the ampersand

symbol to indicate that a variable name comes next, followed by the variable name. Lastly, click on the name

given to the variable and right-click to select this option from the context menu: Add Variable.

We can see that the variable properties are edited. Now we can assign it a data type.

It has been added to the Variables selector.

3. The third option is to select Insert from the menu bar and then Variable… and New Variable…

In the example displayed, the Default rule is used to assign the current date to the CustomerAddedDate attribute

by default.

Now we save... and press F5.

We are notified that the new attribute CustomerAddedDate will be added to the CUSTOMER table.

We click on Reorganize...

[DEMO: https://youtu.be/jqIcfWNDhOk]

And once again we have the application ready to be executed.

We click on Customer...

And we can see that the new “Added Date” attribute is already started with today’s date.

If we hadn’t entered the Default rule, the date field would be empty as the other fields.

We enter a customer… Robert… Hill… who lives on 81st Street…. his phone number is 760 5100 and his email

address is Rhill@hotmail.com … note that today’s date is suggested, but we can change it.

https://youtu.be/jqIcfWNDhOk
mailto:Rhill@hotmail.com

If the users at the travel agency were interested in allowing the date to be edited, preventing future dates from

being entered... we could create an Error rule.

We open brackets and type ‘The date must be lower or equal than today’, close brackets … and add the condition

if CustomerAddedDate > &today;

[DEMO: https://youtu.be/EPiudriAo_M]

To try this at runtime... we press F5...

We enter Alex… Johnson…

And if we try to enter a date higher than today...

The condition that we defined is met and the associated error is displayed.

Now, let’s suppose that our users at the travel agency have told us that the date a client was added cannot be

edited. It must be shown as disabled in the form and saved as suggested by the application...

To meet this request, we would have to remove this rule because it no longer makes sense.

https://youtu.be/EPiudriAo_M

Also, we would have to state a new rule... Noaccept.

We replace the text “attribute or variable” between brackets with the attribute CustomerAddedDate and delete “if

condition”, because we want this rule to always be executed.

Now let’s try this behavior... F5...

As we can see, the date is initialized by the Default rule and disabled by the Noaccept rule.

We've seen that to initialize the CustomerAddedDate attribute with today's date, we have to define this Default

rule.

It's important to know that every Default rule that we define will be executed only when we're adding records.

That is to say, if we query a customer that was already saved, the Default rule will not be executed... because this

customer already has an insertion date… and the Default rule doesn't overwrite it.

Now, let's suppose that instead of defining the Default rule we made this assignment: CustomerAddedDate =

&Today;

By defining this rule, the CustomerAddedDate attribute would always be assigned with today's date. This is an

assignment rule, and it will always be executed, regardless if the user is inserting or updating data, etc.

A condition can be added to an assignment rule so that it is executed only when the user is performing a certain

action in the database, such as an insertion, update or deletion.

Let's do it. We type if insert:

The behavior of the rule defined in this way will be the same as that of the Default rule, because now we have

conditioned the assignment to be made only if a record is being inserted. This is what the Default rule does.

Just like a rule can be conditioned with if insert, we can condition rules to be executed if update or if delete as

well.

Something important to note and learn is that the order in which rules are defined doesn’t necessarily match

the order in which they will be executed.

This set of rules, could be stated in any other order and the result at runtime would be exactly the same, because

GeneXus decides when each one of the defined rules should be triggered.

Finally, remember that each transaction may need to have its own behavior rules defined.

In this case, we’ve defined rules in the Clients transaction to check the behavior that we were asked to control

when users interact with the clients' details. Most likely, the agency wants to control certain rules or behavior for

attractions as well... or for another transaction. To this end, each transaction has its own rules section.

Lastly, we save the changes in GXserver.

