


So far, we've seen that for every transaction object, a table for each level

is created to store its data and retrieve it later.

The transaction, in its canonical form, is used to perform the insert,

update and delete operations on these tables through its screen, as well

as to navigate (retrieve) the data in these tables.



We had already seen how to associate a Data Provider with the

transaction in order to populate its table(s) with data.

Remember that the Data Provider “Used to” populate the tables with data

(“Populate data”) will be run in the reorganization, when the tables

associated with the transaction are created.

Note: If this Data Provider is changed anytime later, it will be run again in

the next F5. Therefore, the data that is already included in the tables must

be handled with care.

The Data Provider is only used for initialization purposes. Next, the

transaction will behave as the canonical one; that is to say, it will access

its tables as usual to retrieve the data, and will allow inserting, updating

and deleting records in the usual way. Pay attention to the Update

Policy property and its Updatable value.



We can also change the default use of the transaction in order to prevent

its data from being updated. That is to say, once the tables have been

initialized with data, it will not be possible to change existing data or

create new data.

To this end, after indicating that the transaction will have an associated

Data Provider used to “Populate Data”, the update policy that is

“Updatable” by default will be changed to “Read Only”.



Here we will see that it is possible to keep the transaction uses —insert,

update, delete, and navigate (retrieve) its data— without storing data in

canonical tables. In sum, we will have transactions that don't create tables

in the application database.

If tables are not created, we will have to indicate where the information

will be retrieved from every time that their data is navigated. In addition,

we will have to indicate what to do when the user enters data on the

screen and wants to “insert” it into the “tables” (or “update” or “delete”

them).



To Insert, Update or Delete data, we will have to explicitly program three

events with these names.

To Navigate (retrieve) the transaction data, we will have to program the

Data Provider associated with the transaction.

Just like when we used a Data Provider only to populate the tables with

data, we could avoid updates by setting a property to indicate that the

process would be read-only; here we may also want to use the

transaction only to retrieve its data, not to update it. The property used will

be the same: it is called Update Policy and accepts the two values that

we've shown.

Next we will see an example to explain what to do and how to do it.



Let's suppose that we have two standard transactions:

Invoice, to represent the invoices issued by the travel agency to its clients

for purchasing tickets, trips, and so on. These invoices are identified with

a sequential number.

A Receipt that is used to represent the receipts issued by the travel

agency to its clients for their purchases. Receipts are also identified with

sequential numbers.

The travel agency's accounting system will have to handle invoices and

receipts in “movements”. In movements, receipts are a type of document,

as are invoices. Movements are identified with a single, autonumbered ID.

Note that movement 1 can belong to invoice 1, and movement 2 can

belong to receipt 1. The movement transaction unifies the data of invoices

and receipts.

That's why the Documents transaction is created with an identifier made

up by DocumentType and DocumentID. This transaction will be like a

“view” that combines the information included in the Invoice and Receipt

tables. That is to say, it will not create a table to contain the data; instead,

it will take it from the tables corresponding to Invoice and Receipt, which

have identical names. Then, the Movement transaction will be a standard

transaction that will generate a MOVEMENT table with DocumentType,

DocumentID as pseudo-foreign key.

Why is it a “pseudo” foreign key? Because there won't be a

DOCUMENTS physical table with DocumentType, DocumentID primary

key to make reference to. However, it will exist at the logical level and, as

we will mention later, the referential integrity controls will be made.



When we indicate that the transaction will have an associated Data

Provider for the data, the “Used to” property is enabled (the “Update

Policy” is always enabled). If we indicate that this Data Provider will be

used to retrieve the data (property Used to: Retrieve Data) GeneXus will

automatically understand that the table associated with the transaction

must not be created because this Data Provider will be used to indicate

where to obtain the data from. In this case, it will be from the INVOICE

and RECEIPT tables, which are associated with the transactions that

have the same name.



The Data Provider Source will be stated in this way. We have a 

Documents group to retrieve all the documents which are invoices, and 

another group to retrieve all the documents which are receipts.



From here on, every time the transaction is run to navigate its data, this

Data Provider will be run to load the corresponding information on the

screen, in a transparent way for both the developer and the user, who will

never notice that it is a transaction without a table.

Then, the dynamic transaction is used as any other transaction. For

example, to print all the documents ordered by date in descending order,

a procedure will be created with the For Each command that is displayed.

In the printblock, the attributes DocumentDate, DocumentType,

DocumentID, DocumentAmount are added as usual. GeneXus manages

to obtain this data from the Data Provider that contains its logic.



Transactions are not only used to retrieve data but also to update it. How

do we go about it since we don't have a table associated with the

transaction?



If the Update Policy property is set to “Updatable”, the Insert, Update and

Delete events will be offered to program the insertion, update and deletion

of the data entered by the user on the screen. Only the developer will

know what to do in each case with this information.

These actions may or may not be allowed depending on the reality. In our

case, it seems that they shouldn't be allowed. However, let's suppose that

they should be.



When the user has finished filling the screen fields to insert a new

movement and has pressed Confirm, we will have to insert a new record

in the Invoice or in the Receipt table, depending on the value given by the

user to the DocumentType field. To do so, we used the &Invoice and

&Receipt variables of the Business Component Invoice and Receipt data

types, respectively (that must have been obtained from the transactions).

Instead of the Insert method of the Business Component, we could have

used the Save method. Note that we don't need to write the Commit

command because we're in the Documents transaction that still has the

Commit on Exit property set to Yes by default. That is to say, it will

implicitly run the Commit.



Here we see how we would code the Update. Since we don't know which 

fields have been changed by the user, we assign all the values. 



Lastly, the Delete operation.



We haven't asked ourselves what happens if we have rules stated at the

dynamic transaction level. When are they triggered? What happens with

the evaluation tree?

What happens with the success or failure messages of Insert, Update,

Delete operations? They are similar to “Data was successfully added”.



Since the DOCUMENTS table associated with the Document transaction

will not be created, we may assume that in the MOVEMENT table

associated with Movement standard transaction, the DocumentType and

DocumentId attributes will not be able to make up the foreign key as they

should. So, does it mean that GeneXus will not be able to check

referential integrity?

Since referential integrity must be ensured, GeneXus generates SQL

triggers to do so. Therefore, it could be said that {DocumentType,

DocumentID} make up a “pseudo” foreign key in Movement. In sum, in

Document it will not be possible to delete invoices or receipts that have an

associated movement. In addition, it will not be possible to add a

Movement that doesn't exist as a document.



Here is a summary of the properties and their effects.





Here you will find more examples of use of dynamic transactions and an

in-depth explanation of the topic.

http://wiki.genexus.com/commwiki/servlet/wiki?28062,Dynamic%20Trans

actions.

For external data providers that handle data repositories with some

relational algebra (they don't have to be databases in the SQL sense), it is

solved differently by importing the service (for example: Odata, CouchDB,

others that are not SQL). By doing it, GeneXus automatically generates

the transaction and a Data view, which is an object created by GeneXus

to provide the communication interface between the transaction and the

external “table”. This will be another case in which the transaction doesn't

create a table in the proprietary database. It is used when Reverse

Engineering is applied (with the Database Reverse Engineering Tool).

In this case, as with dynamic transactions, the developer will use BCs and

For Each commands as usual, which will be internally translated into

invocations to the external service.




