When the invoked object returns a value

GeneXus 16

When the invoked object returns a value

Invoked object returns a value GeneXus

Object A Object B

&var; I &var, Bl &var;)
’

call

AttractionsList(attributel, 2, &variablel)

We have seen how to state parameters in an object to allow it to receive data from another object and
perform the corresponding actions according to this data. To this end we used the Parm rules and variables.
The examples we saw involved input parameters; that is to say, parameters only received by the object.

In this way, if object B has a Parm rule stated with three variables, to invoke object B, any object will have to
send it three values that, as we've seen, may be saved in attributes, be an expression (as in the case of a
fixed value), or be saved in variables.

Now we'll see what happens when object B must return a value to the caller object, when it ends running.

Invoked object returns e value GeneXus

[©] StntPage X or A ist X [57 Entera Fiter X [T Fhght X >

Web Form | Rules | Events | Vanables | Patterns

Name Type Descnption ormula Nullable
3 Aght Fight Faght
¥ Fightid Id Fight Id
S, FightDepartureArportid Fight Departure Arport Id No

FightDepar tureArpor thiame Fight Departure Arport Name
FightDepar tureCountryld Fight Departure Country 1d
FightDepar tureCountryName Fight Departure Country Name
FightDepartureCityld Fight Departure City Id
FightDepar tureCtyName Fight Departure City Name

FightAmivalArportid Fight Arrival Arport Id No
FightArmvalarpor thame Fight Arrival Arport Neme

FightArrvalountryld N D a——

FightArrivalCountryName Formula Editor

FightArmvaiCitytd
FightAmivaiCityName
Figh®rice

FlightPricg®(1-AirlineDiscountPercentage/100) IF AirlineDiscountPercentage >=
FlightDiscountPercentage;
FlightPrice*(1-FlightDiscountPercentage/100) OTHERWISE;

o TR P T

* FightDscountPercentage
e v s
¢ ArineNome
¢ ArineDscountPercentage Percentaje Arine Dscount Percentage
» FightFnalPrice Price Fight Final Price FightPrice *(1-ArineDscountPercentage/100) IF Arine.
A FightCapaaty Numeric(4.0) Fight Capacity count(FightSeattocaton)
Seat Seat Seat
? FightSeatid 1 Faght Seat Id
T FightSeatChar SeatChar Faght Seat Char
J° FightSeatLocaton Locaton Fight Seat Location No

In the Flight transaction we had a formula that calculated the price of a flight according to the discount
percentage offered by the airline and the percentage indicated for the flight itself. It selected the biggest
discount and applied it.

Invoked object returns a value GeneXus

Price Fight Final Price FightPrice *(1-ArrineDiscountPercentage/10... +»
. FightComnmin. Ml). Ehin £ i s b Elim b M e
Seat Formula Editor

i FlightPricg*(1-AirlineDiscountPercentage/100) IF AirlineDiscountPercentage >=

' FlightDiscountPercentage;
” FlightPrice®(1-FlightDiscountPercentage/10@0) OTHERWISE;
Cancel
|)

:— Invoice X [E4l Flight X ~

Web Form | Rules | Events | Variables | Patterns

Name Type Description Formula Nullable
'_:blnvo-ce Invoice Invoice
¥ Invoiceld Id Invoice Id
»° InvoiceDate Date Invoice Date No

Numeric(4.0) Customer Id No
¢ CustomerName Customer Name

¢ CustomerLastName 3 Customer Last Name

¢ InvoiceTotalAmount Price Invoice Total Amount No

Fiig Flight
Fight Id
¢ FlightPrice Fiight Price

S, FightArivalCountryName ! Fiight Arrival Country Name
Fiight Arrival City Name
Percentaje Invoice Fiight Discount No

Price Invoice Flight Amount No

Suppose we're creating a transaction to record the invoices issued to customers when they purchase flight
tickets.

Also, suppose that the discount is a more complex calculation that implies not only the flight, but also some
condition related to the customer who is purchasing a flight ticket. For example, the number of tickets that
he has purchased in the past, if he is a recurring customer, and if a destination is offered at a discount. The
discount percentage is determined according to these more complex conditions.

GeneXus

Invoked object returns a vaelue

Object A Object B GetDiscount

=T -1

__ g

&discount = GetDiscount(CustomerId, FlightId)

.. "9

For cases such as this, we may need to implement a procedure that makes these calculations and returns
the resulting value to the caller.
For example, we could call this procedure GetDiscount.

The procedure will have to receive the customer and flight as input parameters. It will return the resulting
discount.

The first question is how this result is received by the object that needs the procedure result. It has to be
considered as a function that is called in order to perform an action with the result returned.

Invoked object returns e value GeneXus

S, FightArrivalCountryName

Fight Arrival Country Name

Invoice* X [0 Flight X * GetDiscount X -
Web Form | Rules | Events | Variables | Patterns
Name Type Description Formula Nullable
W tnvoxce Invoke Invokce
P Invoiceld 1d Invowce Id
»° InvoiceDate Date Invoice Date No
Customerid Numeric(4.0) Customer 1d No
UstomerName Character(20) Customer Name
¢ CustomerLastName Character(20) Customer Last Name
* InvoiceTotalAmount Price Invoice Total Amount No
Fight Fight Fight
y Fightd 1d Fight Id
¢ me Price Flght Prce

GetDscount(Customerld, Fightld)|

B9 Invoice® X [F4 Flight X »" GetDiscount X =

Structure * Web Form Events | Vanables | Patterns

InvoiceFlightDiscount = GetDiscount(CustomerId, FlightId);|

&discount = GetDiscount(Customerld, Flightid);

msg(“"Free Flight") if GetDiscount(CustomerId, FlightId) = 100;

One possibility is to assign the result to an attribute. For example, we could define the FlightDiscount
attribute in the Invoice transaction structure as a formula that is calculated by invoking GetDiscount

In this way, the formula will be evaluated in every object where the InvoiceFlightDiscount attribute is
mentioned. The GetDiscount procedure will be invoked and executed, and when it ends running, the
returned result will be shown as the formula attribute value.

If we don't want to set this attribute as a formula, but rather we want it to be an attribute stored in the
corresponding table, and have it stored with the procedure result only when the transaction is executed, we
type in the rules the first assignation we could see above.

In addition, the result of the procedure's execution could be assigned to a variable.

Also, it may not be assigned, but used in an expression instead. For example, to condition the triggering of a
rule.

Or of instructions in a procedure or an event:

If GetDiscount(Customerld, Flightld) > 10

Endif

We will not talk about how to implement the GetDiscount procedure, because it isn't relevant for what we're

studying now. However, we must see how the parm rule is stated in the called object when the call syntax
assumes that the object returns a value, as in the examples that we've just mentioned.

Invoked object returns avalue GeneXus

Object A ObjectB GetDiscount

=1 1]
B Wi

® | |customerId FlightId

&discount = GetDiscount(CustomerId, FlightId)

~_ 0 2

In the rules section of the GetDiscount procedure we must state the Parm rule with the number of
parameters described in the call... plus one at the end...

Invoked object returns a value GeneXus

Object A ObjectB GetDiscount

=111
r— — AT

® | Jcustomerid FlightId

&discount = GetDiscount(CustomerId, FlightId)

& 2

...that will have to be a variable whose value is loaded in the object code (and in our case, in the procedure
Source). The value taken by the variable when the code ends running will be the value returned to the object
that called it.

Invoked object returns a value GeneXus

Object A ObjectB GetDiscount

-1 I-1

g Ay

® | Jcustomerid FlightId

GetDiscount(CustomerId, FlightId,

For this same Object B we could have made the invocation as we did before:
where the first two parameters are input parameters and the last one is an output parameter.

The only issue is that in this way the invocation doesn't clearly indicate that &discount will return loaded. In
other words, it isn't made clear that the invoked object will return a value. In these cases, using the
invocation syntax that clearly indicates it is recommended.

Invoked object returns avalue GeneXus

Receiving values in a variable or in an attribute

Lastly, let's look at the case where a parameter of the Parm rule is an attribute instead of a variable.

Variable or Attribute in Parm? GeneXus

Object A ObjectB GetDiscount

=1 1-E1
1S a2 T 53

Filter of any

type and
more Filter by =

——

®| [customerld Flightld

&discount = GetDiscount(CustomerId, FlightId)

What's the difference between using a variable or an attribute in the Parm rule of the invoked object?

If the value is received in a variable, it can be freely used in the programming: it can be used as a filtering
condition for filters such as equality, higher than, higher than or equal to, and so on... also, it can be used for
an arithmetic operation, or for whatever is necessary. It's a space in memory with a name that we use within
the object through explicit instructions, to do what we want.

If, on the other hand, the value is received in an attribute, this is fixed, determined, and implicit. We receive
values in an attribute when we access the database from inside the object. In particular, a table in whose
extended table this attribute is stored. So, when a value is received in that attribute through a parameter, an
equality filter will be applied. Only the records that have that value for the attribute will be considered.

Let's see this with an example.

Variable or Attribute in Parm? GeneXus

Example: receivingvaluesin a variable vs. receiving valuesin an attribute

.

1K

Source

* AttractionsReport® X

Layout Conditions | Variables

parm(in: & tryld);

Layout | Rules * | Conditions | Variables

print Title

print ColumnTitles

For each Attraction order Countryld
where Countryld = &
print Attractions

endfor

t_file('AttractionsList.pdf', 'pdf’);‘A

v

g

o " AttractionsReport® X
Source Layoutl ‘Condmons Variables

1 parm(in: CountryId);

it_file('AttractionsList.pdf’,

Layout | Rules * | Conditions | Variables

1 print Title
print ColumnTitles
For each Attraction order Countryld

print Attractions
€ endfor

5

"pdf’);

v

:

We make a copy of the AttractionsList procedure with the AttractionsReport name.

Remember that the procedure on which it is based uses a variable as a parameter: &Countryld. It used it to

filter the attractionsin the Attraction table by country.

As we can see, it is implementing an equality filter: it will list only those attractions whose Countryld

matches the value of the &Countryld variable received in a parameter.
We could have implemented exactly the same without explicitly indicating that filter.
How? By receiving the value directly in the Countryld attribute.

When we receive the value in an attribute in the Parm rule, GeneXus uses an equality filter; that is to say,

only those records that have the same country identifier are accessed.

If we look at this object's navigation list...

Variable or Attribute in Parm? GeneXus

Navigation List

* AttractionsList X * AttractionsReport X [M] Navigation View X

Pattem Procedure AttractionsReport Navigation Report = | A
\ - - —_
.+ AtractionsReport &
Warnings d,J,
e; poor performance may be

$pc0038 There is no index for order CountryNa
noticed in group starting at line 3.

Levels o
o

For Each Attraction (Line: 10)

oAt

Q 0 Errors [1 Warnings [Q 0 Success |

...we see that the filter is applied even if the Where clause is not written.

It's interesting to note that since the For Each command is being run through ordered by CountryName, the
entire table has to be run through to filter by the Countryld values corresponding to the parameter.

Variable or Attribute in Parm? GeneXus

Navigation List

* Astractionslist X . * AttractionsReport® X [™] Navigation View X

Layout | Rules | Conditions | Variables

print Title
print ColumnTitles

For each Attractionjorder CountryId

print Attractions

endfor * Amractionslist X * AmactionsReport X [M] Navigation View X =
Pobas Report 3]
"™ oF Altract eport E
© .- Crmmm = y?
Levels o
For Each Attraction (Line: 10) 3
=]

[0 Errors [0 Wamings [& 1 Success

On the other hand, if we order by the attribute used to filter, we see in the navigation list that the entire table
is no longer run through.

Variable or Attribute in Parm? GeneXus

DEMO

oF Asrschborslist X ¢ AracsorsReport X [7] MavigationVeew X [EntecisvacsoraFiber” X

Web Form Rules Congibons Vanables

* F5 = runWeb panel, select France * .05 von a0 s

Let's replace the invocation in the web panel that called AttractionList with an invocation to this other
procedure: What comes after a double slash is considered a comment; that is to say, it isn't interpreted by
GeneXus as an instruction. In this way, we comment the first invocation and type the new one:

We run it...
We select France and list it...
As we can see, the list contains the tourist attractions of France.

Lastly, upload everything to GeneXus Server.

Veariable or Attribute in Parm? GeneXus

ObjectB

- T
—_—_—

Filters by =

If we received more than one value using attributes to receive them, only the records that have the same
value as each attribute received would be accessed.

Also, we can't change these attribute values.

Variable or Attribute in Parm? GeneXus

5

parm(inout: &varl, in: &var2, out: &var3);

ObjectB

Filters by... > >=< <=

&var, = ...

If our objective is not to receive values to apply an equality filter, the solution will be to receive values in
variables instead of using attributes. In addition, they can be freely used in the programming, for example,
to assign other values to them if necessary.

In this sense, we must also say that not only the last variable of the Parm rule can be used as an output
parameter; that is to say, it will be returned to the caller. All variables can be input, output or input/output
variables. In the example, &variable 1, that as we indicated changes its value inside the object code, could
be an output, or input/output variable.

"o ou

This can be indicated by typing “in”, “inout” or “out” before the variable names, as we can see here.

Communication between objects is essential for any GeneXus application, because it enables an object to
start running another object and send or receive information to and from it.

GeneXus’

The power of doing.

Videos training.genexus.com
Documentation wiki.genexus.com
Certifications training.genexus.com/certifications

