LOADING COMPOUND DATA TYPES

GeneXus object: Data Provider

GeneXus 16

On more than one occasion, we need to store in memory a list of elements which hold the same type of
information with different values stored.

Loading compound data types GeneXus

For instance, the travel agency might need to carry out operations with a group of customers who share a
common feature, or we might be asked to process information about specific data on a group of tourist
attractions and this could mean that we must load the lists in memory temporarily.

Loading compound data types GeneXus

SDTCustomer

id: Id
Name: Name
Address: Address

&Customer: SDTCustomer
\\\ \\\‘ ‘\\“
NN Id
"\ Name: ‘John Smith’

N Address: ‘5th. Avenue 1234’

To solve this kind of requirement, we must create a structure in memory capable of storing a collection of
elements.

We have seen that structured data types, as SDTCustomer in this example, enable us to define structures
that store several data corresponding to an element.

In this graphical representation we are then storing in memory the identifier, the name and the address of
one customer.

Loading compound data types GeneXus

SDTCustomer

Id: 1
Name: John Smith T —
Address: 5th.
Avenue 1234
SDTCustomers
1d:2 Y Id: 4
Id: 1 Id: 3)
Name: John Smith Name: Susan NaasiRebesikii Name: Pfeter Jensen
Address: 5th. Ave Brown Address: 81th. St Address: St,Paul
T " | Address: 7th.Ave. : ihutally Rd. e

1

A collection of customers

To store several elements with customer data, we saw that we need to define a structured data type and
indicate that it is a collection.

Loading compound data types GeneXus

New requirement: Ranking of countries

Ranking of countries based on the number of tourist attractions they offer:

France : 3
United States : 2
Egypt: 1

Let’s suppose that we have to implement a new requirement for the travel agency.

The travel agency wishes to provide its customers with a ranking of countries based on the number of
tourist attractions offered.

This means that we must show all countries, sorted from larger to smaller in what refers to number of
attractions offered.

To solve this requirement we must first load all the countries stored in the database in a structure, each
with its corresponding number of tourist attractions. And then we will have to sort them according to that
number from the greater to the smaller amount, to then show them either on a web panel or a listing.

Loading compound data types GeneXus

New requirement: Ranking of countries

To save one country in memory:

o SDTCounty ™ X

Name Type Is Collection
& SDTCountry O
14 Id]
* [Nme D
* CountryAttractionsQuantity Numeric(4.0) 0

To save a collection of countries in memory:

g SDTCountnes X

Name Type Is Collection
b [Sorcanes e &)
A SOTCountriesiten

e 1d id a
* Name Name :_‘
* CountryAttractionsQuantity Numeric(4.0) a

Let’s start by creating a new object of the structured data type , which we will call SDTCountries.
For each country, we need its identifier, name and number of registered tourist attractions.

With the first definition in the slide, we indicate that we will be saving in memory the information relative to
one single country.

But we need to design a ranking of countries, so we must store several countries. Therefore we check the
IS COLLECTION box to have a structure that will allow us to store data of several countries (as shown in the
second definition in the slide).

This structure includes the same members we defined at the start, though grouped into a substructure
called SDTCountriesltem . This substructure was automatically created when we indicated the collection
checkmark.

Each item will store one country’s data, and the collection will store the group of countries’ data.

Loading compound data types GeneXus

Collection structure

(Id: 1
Name: Brazil
CountryAttractionsQuan

o 1d: 2
Name: France
CountryAttractionsQuan

Id: 3
Name: China
CountryAttractionsQuan

\ tity: 1)

Id: 4
Name: United States
CountryAttractionsQuan

Data Provider

Database

\ COUNTRYTable /

v

To load the data of the collection we will use a GeneXus object called Data Provider.

The Data Provider object enables us to load a data structure, for example, based on data from the database,

and it returns the loaded structure.

Loading compound data types GeneXus

New requirement: Ranking of countries

1 DPRarbngCountnedWithAltractonsQty x
Rules | Variables

SOTCountries
{

SOTCountriesItem
{
Id =
Nome = /*Name value*/

File Edit View Layout Insert Build Knowiedge Minager Windo

KB Explorer ? X 5 OPRarkingCouneswihAmactionsQy © X
per Rules | Variables CountryAttractionsQuantity = /*Country Attractions Quantity value®/

&\ FighiDepatiae ")
y - I)
ot GHO0AS) . X
¥ | Filter X
Name DPRankingCountries WithAttractionsQty
Drag the SDT to the source O arking Couistes Wik Adaions Qi
of the Data PI’OVIdel' Expose 35 Web Service False
Module/Folder Root Module
- Object Visibility Public
o G0
‘_-' InzenC atmgorm U g adst o Infer Structure No
Invosce
7 Mazirvelraenfemove Output SDTCountries

o} PartCustomer Collection False

oF Procedae! Outpt
o+ Reponl
2. SOTC 4 Show: Genenl = | X | Find
& SOTCourny

© Properties T Toobox

We create a Data Provider object in GeneXus and name it: DPRankingCountriesWithAttractionsQty.

We can see that GeneXus positions us in the Source section of the Data Provider. Here is where we will
declare how we want the data to be loaded in the collection we want returned. See how easy it is to declare
the load: Go to the window of the KB Explorer and find the structured data type SDTCountries, then drag it
to the source of the Data Provider.

We can see that GeneXus automatically wrote several lines of text.

If we now open the properties of the Data Provider, we will see that GeneXus assigned the name of the
SDTCountries collection to the Output property. This means that the DataProvider will return a
collection of the structured data type SDTCountries, loaded with data.

Since the SDTCountries is already a collection, we will not need to configure the Collection property of the
Data Provider with True value. We would have to do this if we wanted the Data Provider to return a
collection based on a simple structured data type.

Loading compound data types GeneXus

New requirement: Ranking of countries

5 DPRankingCountrieswWithtrachonsQty * X
Rules | Vanables

_
[SDTCountries |

SDTCountriesItem ——

{ — Structured data type
Id = /*1Id value*
Name = /*Name value name
CountryAttractionsQuantity = /*Country Attractions Quantity value*
}
]
5 DPRankingCountieswihAtiactionsQty * X
[Rules Vanables
SDTCountries
SDTCountriesItem
{
: Id = /*Id value*
Substructure of the — 7> ¢ Nowm = Flame velue's . . B .
CountryfttractionsQuantity = /*Country Attractions Quantity value
collection’s item. S|P

Now let’s analyze what GeneXus wrote in the source.

We recognize the name of the structured data type SDTCountries that is a collection. And inside, the
substructure of the collection’sitem is between braces.

Loading compound data types GeneXus

New requirement: Ranking of countries

o SDTCountries X

Is Collection

Name Type
#://SDTCountries TEEEE—E—E——————

1 SDTCountriesItem
o ud 1d a
* Name Name [:]
* CountryAttractionsQuantity Numeric(4.0) O

g DPRankingCountiesWithéttractionsQty * X
‘Rules Variables

1. SDTCountries

{

3 SDTCountriesItem

4 {

5 Id = /*Id value*/

> Name = /*Name value*/

7 CountryAttractionsQuantity = /*Country Attractions Quantity value*;
}

=l

Let's compare this to the structure of the SDT:

We can see that GeneXus represented, as text, the structure of the SDTCountries, and provided members
Id, Name and CountryAttractionsQuantity from the SDTCountriesltem substructure for loading their values.

Loading compound data types GeneXus

New requirement: Ranking of countries

¥ DPRankingCountries\WithAttractionsQty = X

Rules Variables

iDTCountl'ic-a from [Country _) Name of the transaction whose
SDTCountriesItem base table we want the Data
: { Provider to go over
s Id = /*Id value*; ' JO OV
Name = /*Name value
CountryAttractionsQuantity = *Country Attractions Quantity value*/
}
|

Indicate the attributes or calculations with which the elements of the collection are loaded:

¥ DPRankingCountriesWithattractionsQty = X
Rules | Varniables

L SDTCountries from Country

{
S5DTCountriesItem
4 {
= Id = CountryId
Name = CountryName
CountryAttractionsQuantity = count(AttractionName)
}
i

Since we will be loading this collection based on the contents of the COUNTRY table, we must indicate to
the Data Provider that it must go over that table. To do this we use the From clause and next to it we
include the name of the transaction whose base table we want to go over.

In our case, from Country.

When the transaction has more than one level, in order to specify a level associated to a particular base
table we want to navigate, we must write the name of the transaction, dot, and the name of the level.

Then we indicate that we want to load the ID element with the value of the Countryld attribute, while the
Name member will be loaded with the value of CountryName, and member CountryAttractionsQuantity is
to be loaded with the number of tourist attractions that each country has, so we assign to this member the
result of the Count(AttractionName) inline formula.

Let’s review a concept we have already seen: this inline formula defined will navigate the ATTRACTION
table by the attribute indicated inside the parentheses. Also, since there is an attribute in common between
the tables navigated by the Data Provider and the formula , that is Countryld , then the formula will count
the attractions of the country navigated by the Data Provider every time.

Loading compound data types GeneXus

New requirement: Ranking of countries

3 DPRankingCountriesWithAttractionsQty * X

Rules | Variables

1. SDTCountries from Country
2B
SDTCountriesItem

{
Id = CountryId
Name = CountryName
CountryAttractionsQuantity = count(AttractionName)

O N b W

0
=.

The base table of the Data Provider is

COUNTRY

What we did was simply to declare one table to be navigated by the Data Provider, and for each record
accessed, we indicated the values we want to assign to a new item in the collection of countries.

Since the Data Provider goes over the COUNTRY table, we usually say that the base table of the Data
Provider is COUNTRY:

The final outcome will be that the collection in memory will store the data of all the countries in the
database, each with its own number of attractions.

Loading compound data types GeneXus

New requirement: Ranking of countries

1) Create a procedure object

2) Define the variables:

* PintCountries * X

Source | Layout | Rules | Conditions
Name Type Is Collection Description

& [Varities ———————
+ | & Standard Variables

* Countries SDTCountries O Countries

* OneCountry SDTCountries.SOTCountriestem a One Country

3) In the source of the procedure, invoke the Data Provider:

.* PrintCountries * X

Source } Layout | Rules | Conditions | Variables * The variable &Countries
’ ‘ receives what the Data
— Provider returns.

v

1/ &Countries = DPRankingCountriesNithAttractionthy()l

Now we create a Procedure object to view the contents of the collection of countries. We call this
procedure “PrintRanking”

We go to the Variables section of this procedure and define a &Countries variable of the SDTCountries data
type.

Then we go to the source, and we load this variable of the collection type, assigning to it the result returned
by the Data Provider we just created.

With the instruction we wrote we are invoking the Data Provider, which will return a collection of countries
that will be loaded in the &Countries variable.

Loading compound data types GeneXus

New requirement: Ranking of countries

To implement a ranking, we must order the collection from highest to lowest quantity of attractions..We use
the Sort method:

o PontCountries * X

Layout | Rules | Conditions | Variables *

les = DPRankingCountriesWithAttractionsQty()
iCountries.Sort("[CountryAttractionsQuantity]™)
\ /

\ f

SDT field to sort the collection

The brackets within parenthesesindicates the reverse order, that is,
from high to low.

Now let’s recall the exact requirement of the travel agency: to view a ranking of all countries sorted from
highest to lowest number of recorded attractions.

Therefore what is left to do is sort the collection we loaded. That is: sort the items of the country collection
prior to showing it, in order from highest to lowest number of attractions recorded.

To solve this we have the Sort method, and the syntax is as follows:
&Countries.Sort("CountryAttractionsQuantity”)

But this will sort the country collection from lesser to greater number of attractions and we need the
opposite sorting because we need to implement a ranking.

So, to indicate the reverse order, inside the quotation marks we add brackets.

Loading compound data types GeneXus

New requirement: Ranking of countries

To go over a collection stored in memory ad print each element in the printblock, we have the For
... in structure

o PrintCountries ™ X

Source Layout | Rules | Conditions | Variables *

v

ountries = DPRankingCountriesWithAttractionsQty()
Countries.Sort("[CountryAttractionsQuantity]™)

-
o o

4. Print Title

6 lFor AOneCountry in &Countries
[‘ print Country

8 ‘Endfor

gi L

The only thing remaining now is to go over the collection again with the Data Provider and print each item
in it, with the stored data.

To go over a collection stored in memory we have the For element in Collection command.

We define a &oneCountry variable to load in it each element we iterate from the collection.

Loading compound data types GeneXus

New requirement: Ranking of countries

Insert the variables in the Country printblock...

o Select Member - =] X

Create controls for variable OneCountry

Name Type Is Collection
4. SOTCountries
- SOTCountl..,
*d id
Name Nome
o Country... Numerk... * PrntCountes * X
wrce * Rules | Conditions | Vaniables *
Ranking
Country name Attiactions quantity
LOneCountry Name *“40neCountry CountryAth achionsly
oK

In the Layout” section, we call this printblock “Country”, and we select: Insert / Variable and choose
&oneCountry

Loading compound data types GeneXus

New requirement: Ranking of countries

Ranking

Country name Attractions quantity
France 3
United States 2
Egypt 1
Brazil 1
China 1
Uruguay 0

So now all we have to do is define the necessary properties to print the list in PDF format.
We go to the procedure’s properties and in “Main program” choose the value True.
Then, in “Main object properties”, we select “Call protocol” and choose “HTTP”.

Finally we have to insert the OutputFile rule in the rule section: we select Insert / Rule and choose the rule
QutputFile.

We finish by naming the file as “Ranking.PDF” and the format we will use as "PDF".

The development of the requirement is now complete. We select run over the procedure to view the
ranking in runtime!

And we view the pdf listing with all the countries stored in the database, each with its own number of
attractions, and the order of countries as requested!

So, we have seen the power of Data Providers to load data in a data structure in memory, specifically in the
case of collection type. And we saw how simple it is to declare what we wanted to load, and then GeneXus
solved everything needed to carry it out.

Loading compound data types GeneXus

New requirement: Ranking of countries

g DPRankingCountriesWithattractionsQty ™ x

ource l Rules | Variables

1. SDTCountries from Country \Nhere... E—

2 {

3 SDTCountriesItem

1 {

S Id = CountryId

6 Name = CountryName

4 CountryAttractionsQuantity = count(AttractionName)
8 ¥

o/t

ol WebPanell * X

Web Form Rules» vent _Condmons Variables

1 Event Start

i &variable = DataProvider()
3 Endevent
;1'

Data Providers optionally admit the Where clause to filter, like the For each command... Further ahead we
will see other examples where Data Providers are used. They may also be invoked, in other object sections,
such as in web panel events.

GeneXus’

The power of doing.

Videos training.genexus.com
Documentation wiki.genexus.com
Certifications training.genexus.com/certifications

