
So far, we have always used simple data types. We have defined attributes and domains of the
Numeric type, of the Character type, and of the Data and Image types, among others.

We will now see that there are cases where it would be useful to have the possibility of having
compound data types.



If, for instance, we needed to save in memory the data relative to a customer in a specific object,
we would have two options:

1. Defining an individual variable to store the ID, another individual variable to store the name,
another one for the address, and so on.

2. Or, GeneXus also offers the possibility of storing several pieces of data together in a
single variable. In this option we need to define a special data type known as compound
data type or also structured data type (SDT), and then create a variable with this data
type.



When we define the SDT we add each member or name of the data we want to store in relation to
the client, with its corresponding data type.

We can assign this definition we produced of a compound data type, as data type of a variable
we will define in any GeneXus object.
We cannot use a structured data type to define an attribute because attributes may only
store simple data.

The slide shows the syntax for assigning, to the variable &OneCustomer (creates as structured
data type under the name SDTCustomer), specific data corresponding to a client.



Instead of starting to define the SDT’s members one by one, we can drag the Customer transaction from the Root

Module and drop it on the SDT structure that we were defining. 

The members of the SDTCustomer2 are automatically created, with the same names as the attributes in the

Customer transaction and their data types. 



Although so far we have shown the use of SDT to store in temporary memory the data relative to
one client, we can easily modify the definition, to store the data of many clients. By checking the
Is Collection box located to the right of the SDTCustomer name, we will be defining that the SDT
stores a collection of elements of the structure defined (instead of a single element as before).
Each item in the collection will store the data of one client and the collection will store the group
of clients.




