DATA PROVIDERS
Contributions on their language, and conclusions

GeneXus 16

Here we will be introducing new knowledge about the use of Data Providers.

) GeneXus
Contributions on their Bnguage and conclusions

Characteristicsof a Data Provider

Qutput: Parameters:
* simple SDT * Variable
* collection SDT + Atiribute
* simple BC

» collection BC

Origin of data:
+ fixed data
» data from the DB:
+ Toload an SDT: of one or several tables
+ Toload a BC:
taken from the same table
from another table

We should recall that the purpose of a Data Provider is to return a data structure
loaded in memory (which may be collection or not). To achieve this, it provides us
with a declarative language focused on the output structure, so that we basically will
need to indicate how to obtain each of those information elements.

To load, we may use a simple or collection SDT, or a Business Component
structure either simple or collection.

Like any other object, a Data Provider may receive parameters (both variables and
attributes). However, as opposed to all other objects, and precisely because of the
objective to allow developers to focus on the output, it is not declared in the parm
rule but rather explicitly as Output property of the object.

We have seen that the data used to load the structures may be fixed data, or
variables, taken from one or from several tables of the database. Specifically, when
we are loading a structure of the business component type, the data may be from
the table associated with the transaction on which the BC was defined, or from
another table in the database.

GeneXus
Contributions on their Bnguage and conclusions

Initializea table with fixed data

Creating records in CATEGORY table
ceiieces This group is added for clarity’s sake. It
E""s“/ GREeCcEI00 is not necessary if we use the property
Category \ Collection=True
{
CategoryName = “Museum”
}
Category)
{ The data provider does
CategoryName = “Monument” - not have base table
} because the data is fixed
Category
{
CategoryName = “Tourist site”
3
J

-

~— These are not attribute names but names of
elements in the business component based
on the Category transaction

Here we are initializing a business components structure of Category, for which we
are using a data provider.

Note that we repeat the groups, one for each category to be created. We could
leave out the definition of the CategoryCollection group because our purpose is to
return a collection of Category elements and we have already set up the Collection
property of the data provider with True value.

Another thing we should note is that since the data provider will not have to go over
any table in order to obtain the data because we are providing the data in the form of
fixed values, then this data provider will not have base table and we will not have to
use a “from” clause.

And last, it is also important to note that the CategoryName elements on the left of
the assignments are not the attributes of the Category transaction, but rather the
elements of the business component based on the Category transaction, which we
are loading through the data provider.

GeneXus
Contributions on their Bnguage and conclusions

Data from the database
Loadingan SDT of one or several tables: Ranking of countries

g SDTCountries X

[structure |

Name Type Is Collection

=J-{:] SDTCountries
=) (r SDTCountriesItem

o 1d 1d O

® Name Name O

* CountryAttractionsQuantity ~Numeric(4.0) O

g DPRankingCountriesWithAttractionsQty X

E Rules | Variables The base table of the

1 bDTCountrieg from Country data prov1der IS:

2@ { COUNTRY

3 SDTCountriesItem

4 {

5 Id = CountryId The table

6 Name = CountryName navigated by
;) CountryAttractionsQuantity = count(AttractionName) the formula is:
i) } ATTRACTION

In this example we see how we can load an SDT with data from several tables. Our
aim is to build a ranking of countries by the number of attractions in each country.

To do that we define a collection SDT in order to store the identifier, name and
number of attractions in each country. To load this SDT we will use a data provider.

In order to obtain the data on the countries, the data provider goes over the
COUNTRY table and, for each country, the count formula navigates through the
ATTRACTION table to count attractions in that country.

Once the collection is obtained, we may order it in descending order by the number
of attractions.

GeneXus
Contributions on their Bnguage and conclusions

Data from the database

Load of a business component with a single table

The base table of the
iountry from Country - data provider is:
CountrylId = CountryId COUNTRY

CountryName = CountryName
CountryFlag = CountryFlag

Country from Country

{ Since the names ofthe elements
CountryId 7 l in the business components are
Countryine | the same as the names of the

: CountryFlag ’7 attributes, we can use abbreviated

notation

In this example we are loading the data of countries in memory.

GeneXus
Contributions on their Bnguage and conclusions

Data from the database

Load of a business component with data from a different table

The base table of the
data provider is:

ServiceCard from Customer CUSTOMER

{
ServiceCardCardType = Type.Full if count(Tripld)>3; Type.Partial otherwise
CustomerId = CustomerId

}

=
The elements correspond to
a business component of

the SERVICECARD
transaction

In this example, a special card (total or partial type) is to be granted to customers
who have bought more than 3 trips. To do it we will go over the customers in order
to count the number of attractions and assign the corresponding card.

We do this by means of a data provider with which we load a business component
structure of the SERVICECARD transaction, to then go over that collection and save
that information in the database.

We will now go into the details of this example.

GeneXus
Contributions on their Bnguage and conclusions

Example
Name Type
% Customer Customer

? Customerid Numeric(4.0)

Y CustomerName Character(20) Business Component = True

* CustomerLastName Character(20)

¢ CustomerAddress Address, GeneXus Name Type

¢ CustomerPhone Phone, GeneXus —

* CustomerEMal Emald, GeneXus ? ServiceCardld 1

¢ CustomerAddedDate Date 4 . - T e

A Customerties Numeric(4.0) ServicsCardType ype —————— Domain: Type

. 2 » # Customerld Numeric(4.0)

& CustomerfreeTrips Numeric(4.0)
Tro Tro ¢ CustomerName Character(20) Enum Valuis: { Full
9 Tripld d ¢ CustomerLastName Character(20) Partial
¢ TrpDate Date
¥ TripDescription Descripbon
¢ Countryld id
o Ctyld Id T . o M
. Name Requirement: Massive creation of cards (ServiceCard),
¢ TrplsFree Numeric(4.0) only for customers who don’t have any:
¢ CustomerTripMiles Numenc(4.0)

- “Full” - for a customer with more than 3 trips bought
- "Partial” - for other cases

Let's now suppose that the travel agency decides that all customers who have
bought more than 3 trips will be receiving a special card of the “Full Services” type
which will enable them to enjoy all services for free. For cases where the customer
has bought less than 3 trips, a card of the “Partial Services” type will be issued.

The transactions we have are: the “Customer” transaction, and the “ServiceCard”
transaction that defines the cards.

Each card has an autonumbered identifier, a customer, and we have defined the
ServiceCardType attribute based on the enumerated Type domain (which only
allows the “Full” or “Partial” values).

GeneXus
Contributions on their Bnguage and conclusions

Solution...

@ We propose a Data Provider to load and return the collection of cards to be generated:

Business Component =)
ServiceCard from Customer

We drag the transaction {

True

e iias o the source of the data ServiceCardId =
e Servicecard | provider Servi d a
§ ServiceCardid 1 - erviceCardCardType =
o ServiceCardType Type > CustomerId =
2 Customerld Numeric(4.0) }
¥ CustomerName Character(20)
« CustomerlLastName Character(20)

They are not attributes but elements in
the structure to be loaded in memory.

We have defined the WPCards web panel that just offers a button to trigger the
automatic process for generating and viewing new cards.

What should happen when the button is pressed?

A card of the corresponding type is to be created for every customer who has no
card issued, always bearing in mind the number of trips bought at the agency.

We will propose a solution where we will use a Data Provider to load and return the
collection of cards to be generated. And afterwards we will go over the collection
to record the cards in the database.

How do we do this?

First we configure the SERVICECARD transaction as Business Component, in order
to record the cards, for which purpose we apply the Business Component concept.

Then we create a Data Provider object called DPCards and we drag the
SERVICECARD transaction to the source of the data provider.

As we saw in previous videos, this will define a structure in memory with items
whose name and type are the same as those of the attributes of the transaction
defined as Business Components.

Then we must go over the CUSTOMER table, then filter customers for whom cards
have not been issued yet, and add for them one card in the collection.

The table that will navigate the Data Provider is determined with the transaction
base defined in the From clause, which in this case is CUSTOMER.

Note that the table that we will be going over to obtain the data is not the same table

associated with the transaction on which we defined the Business Components, that is,
SERVICECARD.

GeneXus
Contributions on their Bnguage and conclusions

Solution...

<::> ServiceCard from Customer
{
S oneeiietaedid o~ -> ServiceCardld based on autonumbered domain
ServiceCardCardType =
CustomerId =

... the structure of the data provider will be as follows...

We can also use a procedure that returns a value

ServiceCard from Customer

{
ServiceCardCardType = Type.Full if count(TripId)>3; Type.Partial otherwise
CustomerId = Customerld

base table of the DP:

CUSTOMER

It is clear that we will be assigning the Customerld attribute to the Customerld item.

We don’t have to assign a specific value to the ServiceCardld item because, as we
should recall, the structure to be loaded was dragged from a transaction declared as
Business Component, and therefore this item is based on the ServiceCardld
attribute that belongs to the Id domain, and its Autonumber property has been set as
Yes.

To ServiceCardType we can assign the value returned by a conditional formula.
This means that the formula will return the “Full” or “Partial” type according to the
number of trips that the customer has bought. We could have also used a procedure
to calculate and return that value.

In order to define the base table that will navigate the data provider, GeneXus goes
to the transaction base we added with the From clause, so the table that it will go
over is the one associated with that transaction, which in this case is the
CUSTOMER table.

GeneXus will also verify that the attributes we add to the right of the assignment
signs are part of the extended table of CUSTOMER, otherwise, an error will occur,
and we will see it reported on the data provider’s navigation listing.

Note that the attributes inside the formulas are not considered for this verification,
because they are only used to define the table to be navigated by the formula.

It is not necessary to assign a value to the element corresponding to the
autonumbered ServiceCardld attribute because it takes it automatically due to the
autonumbering of the attribute. Likewise, we can leave unassigned any element in
the business component to which we do not wish to load a value, so when the
record is created in the table, the value of the attribute will be empty.

In this case, restrictions apply to the foreign keys, to which we must assign a value,

unless we have defined the attribute as nullable.

GeneXus
Contributions on their Bnguage and conclusions

Solution...

.. but we only want to go over the customers who still don’t have cards...
ServiceCar L

<there count(ServiceCardType) = @

{

ServiceCardCardType = Type.Full if count(TripId)>3; Type.Partial otherwise
CustomerId = CustomerId

}

.. let’'s simplify. ..
ServiceCard from Customer
Where count(ServiceCardType) = ©

{

ServiceCardCardType = Type.Full if count(Tripld)>3; Type.Partial otherwise

}
t's analyze the output...

@

= Output
foutput ServiceCard
Collection True

Remember that we do not want to navigate all customers and load a card for each.
We want to navigate only those customers who still do not have cards.

Data providers enable us to include, in their syntax, all the clauses permitted in the
For each, so we add the Where clause shown on the slide.

Since the only attribute referenced in the Where is inside a formula, as said, it will
not be included in the verification of whether it belongs to the extended table of
Customer or not.

Note that, instead of Customerld = Customer Id, we simply used Customerld.
Remember that the Customerld to the left of the assignment is the element of the
structure that will be loaded in memory, and the one on the right is the attribute that
will define its value. Since they have the same name, we may use the abbreviated
notation and write Customerlid only.

Let's now analyze the output, in other words, what the data provider returns. Since
the SERVICECARD transaction was dragged over the source, then the Output
property has been automatically associated with the ServiceCard business
component associated with the transaction.

And what about the Collection property? The structure we are loading does not
represent a collection. It only represents an instance in memory, with the structure
of the SERVICECARD transaction. However, we must obtain a collection of
generated cards, so we set up the Collection property with True value... and we
indicate a name for the collection that this data provider will return loaded.

) GeneXus
Contributions on their Bnguage and conclusions

Solution... Event Enter

&SeniceCardCollection = DPCards()

Invoking the Data Provider...

EndEvent

Generate caeds

Service Card id Service Card Type

AcServceCaed Aemil) SenveceCaedid || BServsceCardutemiD) SenvceCand Type DCustomertiame | | BSernceCarnd

&1 WPCards * X

Web Form * | Rules | Events | Conditions

Name Type I Collec... | Description
-I{ & | Variables
+){ & | Standard Variables
[iZ] serviceCard ServiceCard @ Service Card

Let’'s now go back to the web panel to invoke the data provider.

In the Enter event associated with the button, we assign what the data provider
returns to a variable (&ServiceCardCollection) defined as a collection of cards
(ServiceCard).

In the form of the web panel, we insert the &ServiceCardCollection variable.
Because it is a collection, GeneXus will automatically understand that it must show
the content on a grid.

) GeneXus
Contributions on their Bnguage and conclusions

Solution... Event Enter

SaVing the Cards . &SeniceCardCollection= DPCards()

For &oneCard in &ServiceCardCollection
&oneCard.Save()

il WrCw® X EndFor
Commit
(] [t
a EndEvent
Serence Corthy
Generate cardhs

Service Card id Service Card Type Customer i Customnes Lart Mame

AServceCard Aemil) ServeceCaedid | BServceCarditemiD) SernceCardType | SSenvceCard temil) Customend

WO Cumomertisme | | BSarnceCard temic).C.

& wPCards® X

Web Form * | Rules | Events Conditiuns!:

Name Type Is Collec... Description
5 (& [V T
+)| & | Standard Variables
|:| ServiceCard ServiceCard Service Card
® OneCard ServiceCard @ One Card

Now, is this enough for the cards returned by the data provider to be actually
recorded on the SERVICECARD table associated with the SERVICECARD
transaction?

No, it is not enough. For the time being, the cards are loaded in memory and we
have shown the contents of the collection.

When we studied the use of business components, we saw that, in order to save we
must use the Save method and then execute Commit. So, we still have to go over
the collection returned by the data provider and then save each element in the
collection as a record in the physical table. And following the saving of all cards, we
declare the Commit command.

In order to run through the collection of cards returned by the data provider, we use
the For element in collection command. This &oneCard variable must be defined
as the ServiceCard business component type, and it represents each element from
the collection that is iterated.

GeneXus
Contributions on their Bnguage and conclusions

Better Solution... Event Enter

Saving the Cards_ . &SeniceCardCollection= DPCards()

if &ServiceCards.Insert()

e emiamdiis Commit
Rudes, | Events | Con endif
[+] [mamratie EndEvent
Serence Corthy
Generate (arch
Servce Card id Service Cand Type Customer i Customer Name Customer Last Name
AcServcel ard terniD) ServeceCardd AServcelard tem(D) ServceCardType SSereielard e D) Cuntomend &SererceCard Aeen D) Cumtomertioma &SeroceCard tom D) CumtomerlantName

& wPCards® X

Web Form ™ | Rules ‘ Events ‘ Conditions I:

Name Type Is Collec... Description
+)| & | Standard Variables
[=] servicecard ServiceCard Service Card
* OneCard ServiceCard @ One Card

However, remember that the Insert method of a Business Component collection
variable can automatically do what we did manually before.

And not only that, it also returns True if all the insertions in the collection were
successful, and False if there were any issues. This way we can Commit if
everything was successful. Otherwise, we would have to read the error messages
and take the actions we consider suitable.

) GeneXus
Contributions on their Bnguage and conclusions

Solution...

At runtime...

- 1) Upon pressing the button,
the result is: the cards

generated are shown.

Service Cards

Service Card Id Service Cand Type Customer id Customer Name Customer Last Name 2) Upon pressmg the buﬂon
again,
the result is: no cards are
generated.

Application Name
Senvice Cards
Sarvice Card |d Service Card Type Customer Id Customer Name Customer Last Name

Now the development of what we were asked for is finally complete. We execute the
web panel and press the button. On the grid we can see the list of cards generated.

We could wonder what would happen if we press the “Generate Cards” button once
again...?
Will the cards be created again for the same customers?

They will not, because, in the data provider, we filtered that we only wanted to
navigate customers with no cards.

We should mention that there are other solutions to solve the same requirement in
GeneXus. With this implementation we have used the concept of Business
Component to update the database and we have combined its use with the
previous loading of a collection structure in memory, with the data to be
recorded.

The use of a Data Provider for this purpose is quite simple and saves us from
having to write explicit code.

) GeneXus
Contributions on their Bnguage and conclusions

About the language

+ Scenario: exchange of hierarchical information between modules of an application.

Data
Interchange

Invoicing Data on receipts sent Debtors/Creditors
System Bill System

Id: 2516
Customer: John Drotts
Date: 12/12/2008
Amount: 1000

Bill
id: 158
Customer: Dane Smith
Date: 12/12/2008
Amount: 750

BillQuantity: 255

Suppose that the travel agency’s system is divided into modules in order to manage
the invoicing system and the debtors/creditors system. We want to send a listing,
from the invoicing system to the debtors/creditors system, with the receipts
corresponding to a given period of invoices (that is, for a given period, we must
summarize, for each customer, the total amount invoiced and then generate a

receipt).

It is hierarchical information (we will be sending receipt data specific of each receipt
document).

The most usual format for exchanging hierarchical information used to be Xml and
Json, but there are more.

GeneXus
Contributions on their Bnguage and conclusions

About the language
Transformation FORMAT
ey i T™XT
| INPUT | OUTPUT ! HIML
HO O : Jf%N
hierarchical structure
Billsinfo <Billsinfo> . f B
Bills <Bills> f ' i
<Bill> i
BillDate: 12{1“ ‘mwtzoamm: : BmQuantity 255
BilAmount: 1000 </Bill> Bl
<Bill> i | smDate 121208 i
Bill <BiiDate>12/12/08<BilDate> st | Sk Dt i
BillDate: 12/12/08 Owie !
;:Anmno‘lso@mo BEAmount 1000
e, < >
= v Bill
m 255 </Bills> H BaiDate 1211208
<BillQuantity>255</BillsQuantity> ‘CustomerName | Dene Smith
&TheBills = GetBills(pary, ..., par,) i
&ml = &TheBills. ToXmi) L e

We should recall that, with a Data Provider, the focus is on the output language: the
composition of the Output is indicated in a hierarchical structure.

Then, for each element in the hierarchical structure, we will have to indicate -in the
Source of the data provider- how it is calculated.

We may represent the same structured information using the various existing
formats.

That is the idea behind the data provider. If a new format for representing structured
information comes up in the future, then the Data Provider will remain unchanged...
GeneXus will implement the transformation method for that format, and we will do is
use it.

GeneXus
Contributions on their Bnguage and conclusions

About the language £ Geils” X
— E Invoice | | Rules | Variables *
¥ invoiceld 1. BillsInfo
Q InvoiceDate 2
A Customerld 3 Bills from Customer -
¥ CustomerName 4 { Qutput: Billsinfo
5 Squantity = .
® CustomerTotalPurchases p Bill Collection: False
* InvoiceTotalAmount - {
== Fiight BillDate = &7
¥ Flightid 9 CustomerName
p FlightAvailableSeats 10 BillInvoicePeriodStartDate = &
* InvoiceFlightSeatQty 11 BilllnvoicePeriodEndDate = &end
oo) 12 BillAmount = sum(InvoiceTotalAmount,
4y FlightFinalPrice - TavolceDAter@hstort
* InvoiceFlightAmount 14 bnd InvoiceDate<=iend)
Name 15 &quantity = &quantity + 1
= [&] BilsInfo - }
S 17 BillQuantity = &
=&y Bills 18 }
=-¢ Bil 19/l
¢ BillDate
® CustomerName
BilllnvoicePeriodStartDate - -
s BlimoicePeriodEndDate &TheBills = GetBills(&start, &end)
* BillAmount
* BillQuantity

In this case, we are using a more complex structure (an SDT with one Quantity
element, and a collection of Bills).

GeneXus
Contributions on their Bnguage and conclusions

About the language

+ Basic components:
Blllslnfo

— Groups i BI"S
- Elements

BillinvoicePeriodEndDate = &end

oo BillAmount = sum(InvoiceTotal, ...)

* CustomerName

— Variables B'"
BillDate = &today
e. Blslnfo CustomerName = CustomerName
\\ BillinvoicePeriodStartDate = &start

» BillnvoiePeriodStartDate &quantity = &quantity + 1
s BilllnvoicePeriodEndDate }
s BillAmount }
Aa—g BillQuantity = &quantity
}

Here we can identify the basic components in the language of Data Providers.

) GeneXus
Contributions on their Bnguage and conclusions

About the language

A repetitive group is analogous to a For Each command-
— Determines base table (in the same manner as a For Each command)
— It has available the same clauses as a For Each command :

from BaseTransaction

Billsinfo - — ""[skip exprf] [count expr2]
{ = _ - »[{[order] order_attributesi [when condi]}... | [order none] [when condx]]
Bills —~ =" [using DataSelectoriVame([[parm1 [,parm2 [, ...]])]
L unique atty, att,, .. att,
Bill [{where {conditioni when cond} |
{ {attnbute IN DataSelectorName([[parm1 [,parm2 [, ...]]} }.-]

BillDate = &today
CustomerName = CustomerName
BilllnvoicePeriodStartDate = &start
BilllnvoicePeriodEndDate = &end
BillAmount = sum(InvoiceTotal, ...)
&quantity = &quantity + 1

}

i
BillQuantity = &quantity
&quantity =0

In the example, the group with the name Bill will be repetitive. Why? We can answer
this question with another question: what would happen if it was a For Each
command, where the elements to the left of the assignments correspond to the
various elements of an SDT variable? In such case, the presence of CustomerName
(to the right of the second assignment) enables us to affirm that there is a base
table. We want to iterate on the CUSTOMER table, so we write the clause “from
Customer” in an analogous manner as we would do in the case of a For Each
command.

Note that, on the other hand, the group with the name Billsinfo will not be repetitive,
and it does not have any associated clauses, while the elements contained in it are
defined on the basis of variables instead of attributes:

BillQuantity = &quantity
&quantity = 0

And what about the Bills group? Note that, in this case, the group only contains
another group. The contained group will be repetitive, so Bills will be a collection of
Bill. Therefore, the Bill subgroup may be omitted (leaving only Bills) so that it will be
implied. This is how the clauses in the group that enable the definition of order and
filters may be associated with this group.

) GeneXus
Contributions on their Bnguage and conclusions

About the language

* The groups may be repeated in the Source:

Client .
s The result returned will be a
Client collection with N+1 items: where
{ Name = ‘Lou Reed N is the number of customers in
Country ='United States’ Mexico.
City = ‘New York'

Client where CountryName = ‘Mexico’

Name = CustomerName
Country = CountryName
City = CityName

[

If the condition were placed in the Clients group, then it would apply to the two Client
subgroups. And that is why clauses are allowed to operate at the level of the

repeated groups (items) instead of only at the level of the group that is collection of
items.

GeneXus
Contributions on their Bnguage and conclusions

Other examples of the language

* Use of paging parameters and clauses
Customers parm(&PageNumber, &PageSize)

Customer [Count = &PageSize] [Skip = (&PageNumber - 1) * &PageSize]
{

Code = CustomerId

Name = CustomerName
}

+ Use of variables, invocation to another Data Provider, Input clause
CustomersFromAnotherDataProvider

&CustomersSDT = GetCustomers() // a DataProvider that Outputs Customers collection
Customer Input &Customer in &CustomersSDT

Id = &Customer.Code
Name = &Customer.Name
}
}

What has been considered in this course is not all that can be said on this subject.
For instance, the variables used may be loaded from another Data Provider, and we
may use specific clauses, as the Input, among other aspects.

You will find full information on the language of Data Providers at:
http://wiki.genexus.com
/lcommwiki/servlet/wiki?5309,Toc%3AData+Provider+language

And full documents about this object at:
http://wiki.genexus.com/commwiki/serviet/wiki?5270,Category%3AData+Provider+o
bject,

GeneXus’

The power of doing.

Videos training.genexus.com
Documentation wiki.genexus.com
Certifications training.genexus.com/certifications

