

When we show what we’ve developed so far to our users at the Travel Agency, they approve it and remind us

that for each tourist attraction, they want to record the city in which it is located.

Therefore, our application must take into account that countries contain a set of cities, and also that each

tourist attraction belongs to a city.

GeneXus provides an easy way to represent a reality such as this of countries and cities.

It is implemented by adding a second level to the Country transaction. Let’s see it.

[DEMO: https://youtu.be/eLPFwD6-1xU]

We open the Country transaction and, while positioned on the last attribute, we right-click and select Insert

Level.

As we can see, a sublevel is opened. We call it: City.

Now there are 2 possible ways to name the attributes on the 2nd level. If we type a period, we see that GeneXus

suggests “CountryCity” as prefix, that is to say, the transaction name + the 2nd level name. We would only have

to complete the attribute name... in this way.

If, on the other hand, we type inverted comas we see that GeneXus suggests the prefix “City”, the 2nd level

name... We would only have to complete it by adding Id at the end, and we would have the name CityId.

We will leave it like this.

Note that it takes the Id domain... and in the next line we also type inverted commas and complete the attribute

name with Name.

This two-level transaction indicates that each country has several cities, and that each city belongs to

only one country.

We save the changes and note how GeneXus has changed the Web Form for this transaction after creating a

second level with cities.

As we can see, for each country now we can enter a group of cities.

Let's go back to the transaction structure.

https://youtu.be/eLPFwD6-1xU

For every two-level transaction, GeneXus determines that it has to create two physical tables:

One table arises from the first level, in this case to record the countries, with CountryId primary key.

And another physical table, associated with the second level, in this case to record the cities in each

country.

Let’s focus on the primary key of the second table that will be created. It is composed of 2 attributes: CountryId

and CityId.

This means that the unique identifier of the cities is composed of both attributes.

Let’s execute the application to see this.

We press F5.

Note that GeneXus is proposing the creation of a table called CountryCity in the database.

This is the table created from the second level that we defined in the Country transaction... and its name is taken

from the transaction name plus the name we gave to the second level.

As we explained before, its primary key is composed of the CountryId and CityId attributes.

We execute the creation of this table in the database... The necessary programs are generated... and the

application is run.

[DEMO: https://youtu.be/0z43AvZDC8E]

We will execute the Country transaction to add some cities for the countries that we have entered.

We query the first country that we have entered... it is Brazil, and we add a city to it.

We identify it as city 1 of this country, and it is called: Rio de Janeiro.

Now we will enter another city for Brazil and code it as city 2 of Brazil. It is Sao Paulo.

We confirm.

Now we go to the second country that we have entered, which is France. We add only one city: Paris.

We confirm.

Lastly, we will add cities for China.

We find China... And we add as city no. 1: Beijing; as city no. 2: Shanghai and as city no. 3: Hong Kong.

We confirm.

As we can see, different countries can have their cities identified as 1, 2, 3 respectively... because cities are not

only identified by their city number, but they are also identified according to the country to which they belong.

Note that for the same country, the city identifier value cannot be repeated.

The application informs us that this country already has a city with this identifier value.

https://youtu.be/0z43AvZDC8E

Now let’s go back to GeneXus and assign a city to each attraction.

We open the Attraction transaction and add a new attribute. We type “c”.

And choose CityId.

We press Enter to add another attribute, and choose CityName:

At the Travel Agency we were told that the attraction city must give the option to not set it. To meet this request,

in CityId we will set the Nullable property to Yes.

As we’ve said before, this property is only set to Yes for foreign keys, because in this case the referenced value

is checked for existence. This is the way to also enable the value to not be set.

We save the changes… and upload the modified objects to GXserver.

We then select Knowledge Management/Team development, add a comment and press Commit.

We press F5…

We are informed that the Attraction table needs to be converted by adding the CityId attribute, which can be left

unset.

We proceed to reorganize it...

