Different attribute names for the same concept

Subtype group

GeneXus 16

Subtype group GeneXus

= GeneXusdeterminesrelationsforattributeswith the same name.

Name Type
e r— e
Country 9 Countvid 1d
Transaction I_@ -
51%=] city / City
¥ cityid Id

P CityNahe ~ Name

Name Type
e Atwacson ﬁ S EAwacsen |
¥ Attractiohld Id ¥ Attractionid Id
) AttractiohName Name ¥ AttractionNgme Name
n Id
Attraction : Ex:gj&ne I{:)me ¥ CountryName Name
Transaction » Gtyid ” R &
¥ CityName Name ¥ CityName Name
Categoryld Id # Categoryld Id
¥ CategoryName Name ¢ CategoryName Name
{aa] AttractionPhoto Image {aa| AttractionPhoto Image

So far, we have seen that GeneXus defines relations between transactions -and between tables-, based on
the names of attributes that it considers equal to one another.

For instance, the Countryld attribute is in the Attraction transaction, where it has a foreign key role,
because it is present, under the same name, in the Country transaction, where it is primary key.

In turn, the CountryName attribute is also in both transactions under the same name: so, GeneXus
understands that it is the same attribute. In this case, it is not a primary attribute, and therefore GeneXus
will decide to store it in the COUNTRY table instead of in the ATTRACTION table.

We can then say that GeneXus always assumes that, if we use the same attribute name, then we are
representing the same concept.

However, there are cases where we might need to use different names for a single concept and indicate
to GeneXus that the two names have the same meaning.

Subtype group GeneXus

Requirement

= Record the flights offered to customers for arriving at a particular tourist attraction

Let’s see how this works.

Let’s suppose that the travel agency needs to record the flights offered to customers for arriving at a
particular tourist attraction.

Subtype group GeneXus

Requirement

. For each flight, the departure airport, as well as the arrival airport

We must record, for each flight, the departure airport, as well as the arrival airport.

Subtype group GeneXus

Need for attributeswith different namesto represent the same concept

{ - ™\ ' ™\
Flight . Airport
Flightld Airportld
Airportld AirportName
Departure AirportName Countryld
Airportld CountryName
Arrival AirportName Cityld
CityName
\. J \. J

To represent this, first we will create a transaction under the name: Flight.
We define the Flightld attribute, which is automatically based on the ID domain.
Now let’s think what other information we should record.

As we said, each flight will have a departure airport and an arrival airport, but we will have to record each
airport on its own, in order to later reference them from the flights.

So, let’s leave the Flight transaction aside for a moment and create another transaction called Airport.
We then define that each airport has one identifier that is Airportld, one name that is AirportName, and is
located in one country and in one city, so we will add the attributes: Countryld, CountryName, Cityld and

CityName. We save, and now we go back to see what our requirement was in the Flight transaction.

To each flight we must add its departure airport and its arrival airport.

Subtype group GeneXus

Duplicated name

StartPage X [5# Flight® X

©w Web Form | Rules | Events | Variables | Patterns

Name Type Description
- {55 Flight Flight Flight

¥ Fiightid 1d Flight Id

& Airportld Numeric(4.0) Airport Id

¥ AirportName Name Airport Name

S {xYeirportid
&9 Duplicate Attribute Name: 'Airportid'

So, we go back to the Flight transaction and add the Airportld and AirportName attributes... but when we
try to add Airportld again, GeneXus tells us there’s an error! Which is: we're adding an attribute with a
duplicated name!

And the same will happen with the AirportName attribute that we were going to add to represent the name
of the arrival airport.

So, what can we do to enter two airports in one transaction? Obviously, we will have to use names of
different attributes to store the flight’s origin and destination information that we want to record.

Subtype group GeneXus

Defining the solution...

| ') rportName
Departure —> FI,ghtDepartureAyportld . port e
FlightDepartureAirportName | ountry
Arrival FlightArrivalAirportld) C?”"WName
FlightArrival AirportName C!tyld
. CityName

Different attribute names
There is no relation
between transactions!

Let’s then delete the attributes we originally entered and define attributes with new names.

We will call the flight’s departure airport identifier with the name FlightDepartureAirportld, and the name
of the departure airport will be FlightDepartureAirportName.

Well, now we have defined new attribute names, but to GeneXus these attribute names are not related to
Airportld or AirportName.

As we said before, if we use different names in the Flight and Airport transactions to identify the airport
concept, then GeneXus will not define any relation between the two transactions.

Subtype group GeneXus

Diagram

Start Page X :T Airport X ',_!‘ Flight X ;i; Diagram1~ X

Aarpat 2 Flight 2
¥ Aurportld ¥ Flightid
AirportName FlightDepartureAirport!
Countryld FlightDepartureAirpor
CountryName FlightArrival Airportld
Cityld FlightArrivalAirportNa
CityName

To verify this, we will create a transaction diagram.

And we will drag the Airport and Flight transactions to see that, in fact, GeneXus does not find any relation
between them because no foreign key was identified in Flight to allow the relation with Airport.

If a relation had been found, an arrow would appear between both transactions.

Subtype group GeneXus

Description attribute

Start Page X ';3. Airport X
= Web Form | Rules | Events | Variables | Patterns
Name Type Description
- {55 Airport Airport Airport
Airpc;r'tld """" ' ” Numeric(4.0) Airport Id
irportName Name Airport Name
& Countryld Id Country Id
¥ CountryName Name Country Name
& Cityld Id City Id
¥ CityName Name City Name

Another way to consider this is to focus on the way in which GeneXus shows the airport identifier attribute
in the Flight transaction.

We can see that it’s indicated with this symbol, which in the Airport transaction is also in AirportName.

This symbol is indicating that the attribute is the one that best describes the airport, in this case, or the
flight, in the other case. When we create a transaction’s structure, GeneXus chooses, based on the
attributes’ data types, which attribute best describes the transaction, but the user can change it, or decide
that there should be no attribute of this class.

Subtype group GeneXus

Description attribute

Attractions

Name Category Name Country Name Country City Name Photo

Beljing t)F TE ELETE
Pans - ¢
StartPage X [8 Flight X

[©> Web Form | Rules | Events | Variables | Patterns

Name Type

Description
1 Flight Flight Flight
¥ Fightid v d Flight Id
y {FlightDepartureAirportld d
¢ FlightDepartureAirportName¢ Open Id ame
- X Delete Del
Y ToggleKey Ctrl+K
Toggle Description Attribute Ctrl+D

This “describing attribute” is used, for example, in the Work With pattern, to allow filtering and ordering by
it, amongst other options.

Let's remember the pattern we applied to Attraction.

In the Flight transaction, we do not want the departure airport to be the attribute that best describes the
flight, so we remove it.

We can see that it is indicated with the square symbol, meaning that it is a secondary attribute and is not
considered as foreign key.

Subtype group GeneXus

Start Page X B0 Atraction X

© Web Form | Rules | Events | Variables | Patterns

Name Type Description
{8 Attraction Attraction Attraction
¥ Attractionld Id Attraction Id
. Y’ AttractionName Name Attraction Name
Foreign key @ comyis 14 Country 1d
¢ CountryName Name Country Name
Categoryld Id Category Id
¢ CategoryName Name Category Name
{aa AttractionPhoto Image Attraction Photo
Qtyld Id Gty Id
¢ CtyName Name City Name
¢ AttractionAddress Address, GeneXus Attraction Address
B0 Flight X

% Web Form | Rules | Events | Variables | Patterns

Name Type Description
TT Fight Fiight Fight
Secondary ? Fghud 1d Fight 1d
attribute ————@ Fighepartureaiportid 1d Fight Departure Airport Id
¢ FightDepartureAirportName Name Flight Departure Airport Name

Let's compare this to the country identifier definition in the Attraction transaction.

In Attraction, the Countryld has an arrow pointing upwards, indicating that it is a foreign key attribute...
but that is not the case of the FlightDepartureAirportld attribute in the Flight transaction.

So, how can we get GeneXus to relate different names to a single concept?

We need FlightDepartureAirportld, even with a name different from Airportld, to be considered as such,
that is: as an airport identifier!

And the same goes for the airport namel!

Subtype group GeneXus

Defining the solution...

* Through subtypes, itis possible to make two attributes with different names correspondto the same
concept.

SUBTYPEOF...

FlightDepartureAirportld m Airportld

FlightDepartureAirportName AirportName

~_

SUBTYPEOF...

But, how can we make this happen?
The answer is: by defining sub-types.

When an attribute has a name different from another attribute already defined and they both represent the
same concept, we can “inform” GeneXus that the new attribute is a sub-type of the other attribute.

From that moment on, to GeneXus, they will be exactly the same thing. So, GeneXus will consider the
attribute FlightDepartureAirportld just as if it was an Airportld, that it: it will identify is as foreign key
in the Flight transaction.

And we will do the same with FlightDepartureAirportName: we will indicate that it is a sub-type of
AirportName.

Subtype group GeneXus

DEMO

[DEMO: https://youtu.be/swgogPuGnOM]

Now, let’s see this in action.
The first thing we must do to define sub-types is create a group of sub-types.
So, we create a new object of the type Subtype group, and name it FlightDepartureAirport.

In the first line here we type the dot ('."), and GeneXus suggests the attributes that start by
“FlightDepartureAirport” which we had already defined in the Flight transaction.

We then select FlightDepartureAirportld... press Tab, and for FlightDepartureAirportld to be a sub-type of
Airportld we select the attribute Airportld as super-type.

We can say that the supertype is the original attribute, and the subtype is the attribute that conceptually
matches that original attribute, but has another name.

Now we add FlightDepartureAirportName, and define that its super-type is AirportName.
Then we save.
This attribute becomes the identifier of this subtype group, so we call it “primary”, and all the attributes

we add in this group, such as FlightDepartureAirportName, will depend on it, like they do in the
transaction.

https://youtu.be/swgogPuGnOM

Subtype group GeneXus

&5 FlightDepartureAirport X -
IS«-btwc lDes(r:phoﬂ Supertype Description
4 FightDepartureAirport
¥ FlightDepartureAirportid Flight Departure Airport Id Arportld
/ * FlightDepartureAirportName Flight Departure Airport Name AirportName S
&\ FlightArrivalAirport X v I_
Subtype Description Supertype Description U
2\ FightArrivalairport
¥ FightArrivalAirportid Fiight Arrival Airport Id Airportld T
¢ FiightArrivalAirpor thName Flight Arrival Airport Name AirportName
M Flight X - O
Web Form | Rules | Events | Variables | Patterns
Name Type Description Formula Nullable N
Fuoht i P |
Y Fightid id Fight Id
» FightDepartureAirportid Fight Departure Arport Id No
12 FightDepar tureAirpor tName Fight Departure Arport Name
» FhghtArmvalArportid Fight Arrival Airport 1d No
e FlightArrivalAirpor tName Fight Arrival Airport Name

Now, let’s go to the Flight transaction, where we will see that the FlightDepartureAirportld attribute has the
symbol of the arrow pointing upwards, indicating that it will be considered as foreign key, and also the
letter S symbol, meaning that it is an attribute defined as sub-type.

Let’s now do the same to define the attributes that will enable us to record the flight's arrival airport.

To do that we will define attributes FlightArrivalAirportld and FlightArrivalAirportName.

Then we save.

We now create a new object of the type “Subtype group”, with the name: FlightArrivalAirport.

We type the dot (".")... and GeneXus suggests the attributes starting by “FlightArrivalAirport”, so we select
FlightArrivalAirportld.

We press tab and declare that it will be a sub-type of Airportid.
Now we add FlightArrivalAirportName, and define that its super-type is AirportName.
Then we save.

Let’s take a look at the structure of the Flight transaction again.

Subtype group GeneXus

Diagram: GeneXus hasfounda relation

;Y} Diagram2 X v
Flight 2) e »l Aurpat 2
| § Flightid i | | ¢ Airportid
FlightDepartureAirportid AirportName
FlightDepartureAirportName N Countryld
FlightArrivalAirportld CountryName
FlightArrivalAirportName Cityld
CityName
« I v

The data will be checked for referential integrity at runtime!

Let’s analyze again the transaction diagram we had previously created.

We can see that now, GeneXus does draw an arrow between the transactions: it considers the subtype
identifier attributes of airport in Flight, exactly as if we had referenced Airportld.

We can see that GeneXus has found the relation between Flight and Airport.

Note that even though in GeneXus there’s only one arrow in the diagram, technically there should be two.

Subtype group GeneXus

DEMO

B Vrovetdgancy - Ganelen 16 Tre o

[DEMO: https://youtu.be/3gKc9aMpDoo]

Let’s see how all this functions. To do so, we press Fb...

The database must be reorganized, as the Flight and Airport tables need to be created. We agree, so we
press Reorganize.

We will start by defining airports, so we will execute the Airport transaction:
We enter the “Guarulhos” airport and indicate the corresponding country: Brazil and city: Sao Paulo.

Now we will enter the “Charles de Gaulle” airport... so, we select: France, and the city is: Paris. Now we
confirm.

Now we will go on to record a flight.

We now execute the Flight transaction... and as departure airport we will select “Guarulhos”, while our
arrival airport will be “Charles de Gaulle”.

We can see that the labels in the attributes are not showing us that this one is the departure airport and
this one the arrival one. If we go to the transaction’s form in GeneXus, and position ourselves on the field
of the first airport.

We can see that the text shown in the label, that is to say, its Caption, is taken from the attribute’s
ContextualTitle property. If we look for it, here is where it'll appear.

We add “Departure”.

We do the same with the name, and add “Arrival” to the arrival airport.

https://youtu.be/3qKc9qMpDoo

We can look at the form, and let’s press F5 once again.

Now we will enter another flight.

If we try to type in airport 15... we get a notice that the airport does not exist.

Data consistency is being controlled, and we are offered the selection list... we can see that we
have the same controls and help as if the attributes were the foreign keys with their original

names, like we saw in this video, but in this case they are their sub-type attributes.

And that was exactly the idea: to define sub-types in order to determine that different
attribute names correspond to the same concept!

This is why this attribute... and this attribute... are interpreted as foreign keys, and these
attributes will be inferred based on them.

But, how does GeneXus know that in this one it should infer the name of this airport, and not of
this one?

Subtype group GeneXus

8 Flight X -

> Web Form | Rules | Events | Vanables | Patterns

Name Type Description Formula Nullable
Rt
Y Fightid 1d Fight Id
Sa FiightDepartureArportid Flight Departure Airport Id No
{3 FiightDepar tureAirpor tName Fight Departure Airport Name
Sa FlightArrivalAirportid I Fight Arrival Airport Id No
S¢ FlightArrivalAirpor thame 2 Fiight Arrival Airport Name

&5 FlightDeparturelirport X

Subtype Descripiion Supertype Description
&5 FightDepartureAirport
Y FightDepartureArportld t Departure Airpdct Id Airportld

¢ FlightDepartureAirporthame Flight Departure Ain Name AirporthName

2] -

& FlightAmmivalAirport X

Subtype Descripti Supertype Description
R FightArrivalAirport
¥ Fightarrivalairportid f Arrival Airport Id Airportld
¢ FlightArrivalAirportName Fight Arrival Airport Name Airpor thName

It’s not because of the order in which the attributes are shown or because of the names we gave them.
GeneXus knows because this attribute has been defined in the same group as this one. And this attribute
was defined in a different group, with this one.

So, we have seen that using sub-types enabled us to represent a situation that occurs in reality,
such as in this case, the flight with two airports with different roles: one for departing and the other
for arriving.

Something we should note here is that, although we defined attributes with descriptive names that
respectively refer to the departure and arrival roles, it was also highly important to group, in the

same group of sub-types, the attributes that correspond to one another.

Note that we have not included all the sub-types in a single group, or the two primary sub-type
attributes in one group and the two secondary attributes in another group. We have grouped
together the attributes that define the departure airport, and in another group we included the
attributes that define the arrival airport.

Subtype group GeneXus

Subtype groups

& FlightDepartureAirport X >

Subtype Description Supertype Description
- &5 FlightDepartureAirport

¥ FlightDepartureAirportid "7bghtDeparmre Airport Id Airportld

¢ FlightDepartureAirportName Flight Departure Airport Name AirportName

O FlightArrivalAirport X v
Subtype Description Supertype Description
=) & FlightArrivalAirport

9 FlightArrivalAirportld 7 Flight Arrival Airport Id Airportld

® FlightArrivalAirportName Flight Arrival Airport Name AirporthName

And this is so, because GeneXus understands with this group:

that when a value is entered for airport identifier FlightDepartureAirportld, then the name of the airport
corresponding to this identifier must be loaded in this FlightDepartureAirportName attribute, and not
in the other airport name we have in the transaction.

Likewise, GeneXus understands that when a value is typed for the airport identifier: FlightArrivalAirportld,
the name of the corresponding airport must be loaded in the FlightArrivalAirportName attribute.

Subtype group GeneXus

Subtype groups

Flight
- Rl control

. Selection list
= Grouped inferences

Flight

FK 1}
Guarulhos

FK

Chales de Gaule

CONFIRM ANCEL DELETE

Subtype group GeneXus

And whatif foreach airportwe wantto view its country and city?
& FlightDeparturefirport X - = Flight X
J % Web Form | Rules | Events | V:
Subtype Description Supertype D
£\ FightDepartureAirport Name Type
¥ FightDepartureAirportld Fight Departure Airport Id Airportld '_;"?'I';ght m
= FightDepartureAiportame | _ _Fight Departure Aiport Nome _ _Alportheme)
I, ¢ FiightDepartureCountryld Fight Departure Country Id Countryld \I) FthtId Id
| - * FightDepartureCountryName Fight Departure Country Name CountryName .| Sa FiightDepartureAirportlid
P P Peptoepwtrenrtine
° ityh e t e U JtyName
e e L S T e e e ’ S FlightDepartureCountryld
Sy FiightDepartureCountryName |
S¢ FiightDepartureCityld
o FlightArrivalAirport X 52 Fbghd)eoarmreotyName
| Sa FiightArrivalAirportld
Subtype Description Supertype Descri S¢ FlightArrivalAirportName
A ‘;O‘WV'-'O‘»\'DO'! Sy FiightArrivalCountryld
? FightArrivalarportid Fight Arrival Airport Id Airportld =
¢ FiightArrivalAirpor thame Flight Arrival Airport Name Airporthame v Fbghmm" alCountryName
£ FightAmvaCountryld . FIgNt Amval Country 1 Countryld . County S¢ FlightArrivalCityld
: * FightAmvaiCountryName Fiight Arrival Country Name CountryName | Sy FlightArrivalCityName
| * FightamvaiGtyld Fight Arrival Gity Id Gityld :
| * FightAmivalGityName Fiight Arrival City Name CityName]
e —— -

Now let’s suppose that in the Flight transaction, for each airport we want to see, besides its name, its
country and city as well.

This may be solved by simply defining more sub-type attributes, in each group necessary, with the
adequate naming and with indication of their super-types. This will enable GeneXus to understand
that, for the group’s primary sub-type, it will have to infer all the remaining related information.
Let's doit.

In this group of sub-types we will define the following attributes:

FlightDepartureCountryld as sub-type of Countryld, FlightDepartureCountryName as sub-type of
CountryName, FlightDepartureCityld as sub-type of Cityld, and FlightDepartureCityName as sub-type of
CityName. We now save.

And we will also add these new attributes to the structure of the Flight transaction. We save again.

And go on to do the same for the other group of sub-types...

And we define:

FlightArrivalCountryld as sub-type of Countryld, FlightArrivalCountryName as sub-type of CountryName,
FlightArrivalCityld as sub-type of Cityld, and FlightArrivalCityName as sub-type of CityName. We save.

After saving, we also add these to the structure of the Flight transaction.

Like we did before, we change each new attribute’s contextual title, so that the label on the screen
indicates the attribute’s role.

Then we press F5 again to execute the application.

Subtype group GeneXus

Flighttransaction

Application Name GeneXus

Flight

Now we open the Flight transaction, and when we check our first flight we can see, for each airport, its
corresponding country and city.

We have seen how to solve a double reference to the same concept with different roles, because the two
airports must be obtained from the same table where each of them had a different role.

Subtype group GeneXus

Other possible solutions '

T Flight X | & Flight X
| % Web Form | Rules | Events | Variables | [} %> Web Form | Rules | Events | Variables
Name Type ¢ Name Type
[Fiight Flight - =) [53] Flight Flight
§ Fightid 1d | ? Fightid 1d

Sa FlightDepartureAirportld Id . 2 Airportld 1d
(3, FlightDepartureAirpor tName

¥ Countryld Id
W FlightDepartureCountryld Id | ¥ CountryName Name
\ FlightDepartureCountryName ame ' ¢ Cityld Id
S FlightDepartureCityld I ! 2

CityName Name
Sy FlightDepartureCityName .

Sa FlightArrivalAirportld

& Airportld Id ~
., FlightArrivalAirpor tName
¥ Countryld d I }4 ightArrivalAirpor
S¢ FlightArrivalCountryld
¥ CountryName Name 2 = o isbais
¥ Cityld Id | ‘v g rivalCountryName
¥ CityName Name J W FlightArrivalCityld
| S¢ FlightArrivalCityName
Defining only one subtype group: . Defining only one subtype group:
“FlightDepartureAirport” 1 “FlightArrivalAirport”

To end, it is important to know that also these could have been equally valid solutions.

In the first proposal, a single group of sub-types has been defined, the one corresponding to the
departure airport, and the super-type attributes were left for the entry of the destination.

And this is totally valid.

In this other proposal... a single group of sub-types has also been defined, but in this case for the group
corresponding to the arrival airport.

In sum, sub-types enable us to indicate to GeneXus how to associate different attribute names to a single
concept. And, as we saw, validations, as well as all the behavior of sub-types will be identical as if we had
used the super-type attributes.

There are a lot of other cases in which it’s necessary to change an attribute’s name in order to avoid a
conflict or ambiguity. In this video we saw the case of multiple references from one table to the other, but
these references don’t have to be direct.

Subtype group GeneXus

Summary and Remarks

Subtypes have allowed us torepresent a reality in which a flight has two airports with different roles.
Subtype groups allow us to set both roles apart (We do not define a single group with all the subtypes).
The rightway to do thisis:

* To define a group of subtypes for each set of attributes matching one another.

* Each group of subtypes must necessarily include a primary attribute subtype (which in turnis a table’s
primary key), or a set of attributes that comprise a primary key.

* In each group of subtypes, define all the subtype attributes that need to be known andwhich beleng to
the base and/or extended table of the group’s primary key.

Subtype group GeneXus

More use cases

Multiple references /\
Indirect

Direct v "
.

- > -
- L4 *

A
Recursive subtypes D _/

* Specialization I I

From this table we have two different paths to get to this table. So we would need subtypes to
differentiate them.

We also have the case when an entity must reference itself.

For example, an employee transaction, in whose information we have to register the employee’s boss,
who is also an employee.

Or in the case where we have an entity which registers general information, for example, of people (such
as the name, telephone number, address, etc.) and then have entities which are specializations of that
other entity, for example clients and passengers, who in particular are also people.

These are only some example from many more. We only mention them here. We won’t study them in this
course.

To finish, we will update the changes in GeneXus server. We add the comments...

And press Commit.

GeneXus’

The power of doing.

Videos training.genexus.com
Documentation wiki.genexus.com
Certifications training.genexus.com/certifications

