

Previously we saw that by simply placing attributes in a grid, GeneXus understands

that it must go to the database to navigate the corresponding table to retrieve the

information, analogous to a For Each command.

Let's see the different cases in which GeneXus can determine a base table to be

navigated.

We had seen the example of the Web Panel with "loose" attributes in the form,

without a grid. Also, we had seen Web Panels that had a grid with attributes and

without attributes.

And we had asked ourselves this question: when the Web Panel doesn't have any

grids nor has one grid, where exactly does GeneXus search for the presence of

attributes to determine whether or not to associate an implicit base table with the

Web Panel? And, if attributes are found in those places, what criteria must they

meet?

On the other hand, we had seen that multiple grids can be included in a Web Panel,

in both parallel and nested manner. Once again, each one of those grids may or

may not have an associated base table.

When the Web Panel doesn't have any grids, but it has attributes in the form (visible

or hidden) or in events (as long as they are outside a For each command), the Web

Panel will have a base table.

How is it determined? In the same way as a For each command to which we don't

indicate a base transaction: by selecting the minimum extended table that contains

all the attributes mentioned where we indicated.

The attribute(s) indicated in the Parm rule, or in the general Conditions (that is to

say, in the Conditions tab), will not be taken into account when determining the base

table. They will be used as filters AFTER the base table has been determined.

When the Web Panel has one grid, to determine the base table GeneXus looks at

what is indicated above.

If the grid has a Base Transaction configured, its base table will be the base table of

the grid/web panel. The attributes mentioned in the places indicated will have to

belong to its extended table (just like in a For each command).

If the grid doesn't have a Base Transaction configured, the base table determined is

the one corresponding to the minimum extended table that contains all the attributes

of the places mentioned.

The attributes of the general Conditions (those of the Conditions tab) and those of

the Parm rule ARE NOT included. The attributes inside a For each command are

not included either.

Note that the grid can be applied a Data Selector to filter and order its data, just like

we did in a For each command (and also in a Data Provider Group).

When there is more than one grid in a Web Panel, the base table of each grid is

determined by considering only the attributes mentioned above.

Each grid will have its Load event; the syntax is displayed above. The generic Load

event cannot be used because we wouldn't know the grid it belongs to.

Unlike the case in which there was a single grid, the attributes outside For each

commands in any event other than "their" Load event will not participate in

determining the base tables. However, they must belong to the extended table of

any of the grids. Otherwise, GeneXus will warn about it in the navigation list.

If there are attributes in the fixed part, the base table of the first grid in the form is

determined by taking loose attributes into account; for the other grids they will not be

taken into account.

To learn more about this special case, visit our wiki:

http://wiki.genexus.com/commwiki/servlet/wiki?6105,Determining+the+Base+Table+

for+Each+Grid+in+a+Web+Panel

We have already seen and programmed various events in Web Panels (for

example, the click event associated with controls included in the form. Depending on

the control, other events such as double click, right-click, and so on can be

programmed as well).

We have also introduced and used the Start, Refresh and Load events associated

with the Web Panel object. The Enter event is a system event that can be

associated with any control inserted in the form. It can also be run when the user

presses the Enter key. We have also defined user events for buttons in an explicit

manner. That is to say, we give any name to an event and associate it with a button

or any other control (note the On Click Event property that simple controls have in

the form).

Next, we will look at Web Panel events in detail, including where they are executed

(in the server where the application is installed or in the client -browser) and in what

order.

In every web application we will have a machine –PC, notebook, or smart device–

connected to the Internet that will allow the user to access the application through a

browser; on the other hand, there will be a server containing all the application

programs generated by GeneXus. Among them will be those corresponding to the

Web Panels (for example, the program generated for the Web Panel that we had

implemented from scratch).

What happens when we invoke the Web Panel from the browser for the first time?

This is known as performing a GET.

The client asks the server to run the program associated with the Web Panel

and return an HTML file that indicates the browser how to draw the screen

(with what data, in what format, etc.).

But, what does the program run in the server to build this HTML file?

The Start, Refresh and Load events, in that order. If it is a Web Panel with a base

table, as in this case, the Load event will be run N times: one for each record that

meets the conditions.

It is important to understand that the first time the Web Panel is run (GET), the

user doesn't have the time to choose a value from the Dynamic Combo Box,

or to filter by attraction name in the variables. It is the first call to the object.

So, the &CountryId variable will be empty… and the condition defined indicates that

the filter must be applied only if the &CountryId variable is not empty (when not

&CountryId.IsEmpty()). The same will happen with the variables

&AttractionNameFrom and &AttractionNameTo. Therefore, no filter will be applied

and the page will be shown containing the grid loaded with all the attractions of all

countries.

In general, a POST takes place every time an action is performed in the client which

requires going back to the server to run it.

Actions of this type may be pressing the Enter key or a button or control associated

with an event.

When a POST is run, the following happens:

The information on the screen is read.

The user event that triggered the POST is executed.

For example, if the user clicks on the New Trip grid option, the AttractionId of the

line on which the click was made is sent to the server. In the server, the NewTrip

procedure is invoked by sending it that value of AttractionId as a parameter. Since

the value returned by the procedure is loaded in the grid variable, &trips, this causes

the line to be automatically loaded again in the resulting HTML file.

If we need to load everything again (for example, so that the &totalTrips variable is

shown with the corresponding value), placing the Refresh command in the user

event will cause the Refresh and Load events are triggered again, as we had seen

in previous classes. This is run in the Server, before building the HTML file returned

to the client.

For Web Panels with several grids, the Refresh event that will now be generic (for

the entire Web Panel) will launch the Refresh and Load events of every grid.

Depending on whether the grid has a base table or not, the Load event, just like for

the case of a single grid, will be run N times, once for every record in the base table

to be loaded as a grid line; otherwise, if it doesn't have a base table, it will be

launched only once.

The triggering order of events is displayed above. It will depend on the order in

which the grids are placed on the screen (from left to right, from top to bottom).

For the attractions grid to display only those of the category selected in the grid to

the left, we will have to indicate the filter explicitly.

To this end, we have added a column with the &Attractions variable, of

character(15) type, with the Attractions text (we have indicated in this way in the

Start event, because it is defined when the Web Panel is opened. It won't change

later). Thus, when the user clicks on this option, we must ask for the attractions grid

to be loaded (again).

To program the attractions grid loading from the category selected by the user in the

other grid, we create a &CategoryId variable to which we will assign a value every

time the user clicks on “Attractions” for the desired line. Note that we have entered a

condition for an attraction to be loaded in the grid (Grid2), which indicates that its

CategoryId must match the variable value.

In this way, the first time it is run no attractions will meet the condition, because for

this case the &CategoryId variable will be empty.

Later, when the user clicks on &Attractions, the variable is given a value base on the

CategoryId of that line. But if we don't do anything else, Grid2 will never be

refreshed. We will have to ask Grid2 to be refreshed.

We do so with the Refresh method of that grid.

To nest grids, Freestyle grids are used. For example, instead of seeing all

categories and clicking on one to view its attractions, we can see them all nested;

that is to say, for each category, all its attractions. As if it was a case of nested For

each commands. It is similar.

Here, navigations are related.

The triggering order of events is the expected one. First, the Start event of the Web

Panel, then Refresh, and finally the Refresh event of the grid and Load. If it has a

base table, the Load event will be triggered N times, one for each line. Otherwise, it

will be triggered only once.

In any case, after the Load of the Freestyle grid, the Refresh and Load events of the

nested Grid will be triggered. Again, this second Load may be run only once or N

times, depending on whether there is a base table or not.

Not every action performed by the user and associated with an event will cause a

POST to the server. Some of them can be solved in the client itself.

For example, if in an Enter or user event, or in an event associated with a control, a

control becomes invisible, or its Caption or color is changed, it is solved in the client

itself.

Many times we need to work with a selected group of elements to do something with

them later on.

Since a grid allows us to view many elements, it's only natural that we want to select

several elements in a grid.

Next, we will see how to make a multiple selection in a grid and how to run through

the elements to process them.

For example, suppose that we have a grid with data on tourist attractions.

To work with a specific attraction, we need to mark a grid row as selected, in order

to access the values of each column in this row.

In a web application, if we want to mark a grid row as selected, we open the grid

properties and set the AllowSelection property to True.

This value also enables the Allow Hovering property, which is True by default. This

means that when the mouse passes over the rows, they are painted in one color.

When AllowSelection is set to True, clicking on an attraction causes the row to be

highlighted with another color. These colors can be configured in the Theme object,

in the classes assigned to the properties Selected Row Class and Hover Row Class

of the Grid class.

Suppose that the travel agency requires that, from a grid of attractions, we select

those that we're interested in and print a list with the selected attractions.

In a Web application, we can use a grid property to select a single row, as we've

seen, but there aren't any properties for us to indicate that we want to select several

rows at the same time.

On the other hand, this can be done in a Smart Device application using the grid

property Enable Multiple Selection. In order to display the checkbox that allows us

to select the row, we use the Show Selector property.

Since we need a web screen to meet the travel agency's request, we must solve this

differently. A solution would be to add a variable of Boolean type to the grid, use it to

mark the selected row, and then run through the grid rows to process those that

were selected. Let’s see how to do this.

First, we will create a web panel called SelectedAttractions, to which we will add a

grid with the attributes AttractionId, AttractionName and AttractionPhoto.

Next, we will create a variable called Selected, of Boolean type and add it to the

grid, in the leftmost column.

We will also add a button and give the name “Print selected attractions” to the event.

In this event, we will invoke the procedure object that prints the selected attractions.

To send them to it, we must first save them in a collection.

To do so, we add a variable called SelectedAttractionsIds, since it is enough for us

to save in the collection only the identifiers of the selected attractions. We assign it

the ID data type and mark it as a collection.

To run through the rows of a grid, we use the instruction For each line … in … the

name of the grid, which in this case is GridAttractions. This instruction will be

positioned in each grid line and will allow us to retrieve the values taken by its

columns in each row. One important thing to keep in mind is that the For each line

command will only run through the records loaded in the grid. If there are more

records on the following pages, they will not be included. Only those records

displayed in the grid lines can be run through.

To find out if the attraction was selected or not, we type If &Selected. If this is the

case, we add AttractionId to the collection, so we type

&SelectedAttractionsId.Add(AttractionId), and close the If clause. Now we close the

For each line clause with endfor. If we were using a Smart Device application,

instead of the Boolean variable we would use the Show Selector property of the

grid. To run through the rows we use the command For each selected line.

Going back to our web panel, once all the grid rows have been run through, we will

send the collection of selected attractions to the list. But in order to do so, we can't

send the collection variable as a parameter. Instead, we have to serialize its content;

that is, generate a text file in a structured format, such as JSON or XML.

We will create a variable to save the JSON, and call it JSonSelectedAttractions of

LongVarChar type…. then we load it from the collection, using the ToJSon method.

We now invoke the procedure SelectedAttractions and send it via parameter the

JSON we previously obtained.

We create an object of procedure type and call it SelectedAttractions. Also, we

define the variables AttractionId, AttractionName and AttractionPhoto. Then we

create a variable called JSonSelectedAttractions, of LongVarChar type and a

variable SelectedAttractionsIds of ID type, which we mark as a collection.

Now we open the rules and type a Parm rule that receives the variable

JSonSelectedAttractions as input. Now we include the rule Output_file… and mark

the procedure as Main and the Call Protocol as HTTP.

In Layout, we rename the printblock to Titles and drag a Text Block to which we add

the text “List of selected attractions.” We also add labels for the columns of the list:

“Id”, “Name” and “Photo.” Finally, we add a line under these column labels.

Now we insert another printblock, call it Attractions, and drag the variables

AttractionId, AttractionName and AttractionPhoto.

In the source we type print Titles…. And load the collection variable

SelectedAttractionsId with the content of the variable JSonSelectedAttractions,

using the FromJson method.

In this way, the IDs of the selected attractions were saved in the collection; we need

to run through them to access them, so we type: For &AttractionId in

&SelectedAttractionsIds, and then with each AttractionId accessed we retrieve the

name of the attraction and its photo. To do so, we type For each Attraction, Where

AttractionId = &AttractionId and load the variables &AttractionName and

&AttractionPhoto from the corresponding attributes.

We close the For Each command, print the printblock with the attractions'

information and finally close the For in clause.

Now we can test what we've programmed, so we pressF5.

In the Developer Menu, we click on SelectAttractions and see that the web panel is

opened, showing the list of attractions. Note that the control associated with the

Boolean variable Selected is a check box that allows selecting attractions.

We choose the Louvre Museum and the Eiffel Tower… and press Print selected

attractions. We see that the list opens, showing the attractions we had selected.

Let's review the concepts seen so far.

To select a single row in a grid, we set the AllowSelection property to True in order

to access the values of each column of the grid, for the selected row.

To select more than one row at the same time, in a Smart Device application the

grid has the property Enable Multiple Selection. By setting it to True, you can select

multiple rows for further processing.

In a web application grid we don't have this property, so we need to use a Boolean

variable in the grid that will allow us to save the row selection.

To run through the rows of a grid in a web application we use the For each line

command. This command will iterate only for the rows that are loaded in the grid at

a given moment, and in each iteration we will have the values of the grid columns for

the row run through. To know if a row was selected, we use the value of a Boolean

variable that we added for that purpose.

In an SD application we use the property Show Selector and the command For each

selected line.

It is not possible to send a collection variable via parameter to a web object, as a

web panel or a procedure with HTTP protocol. To send the details of the selected

attractions we use a collection, but then serialize that information generating a

structured text file; for example, in JSON or XML format.

By changing the value of some grid properties we can make it change the way

information is displayed; for example, show data horizontally, with infinite scroll, or

flexibly, customizing the display according to its content.

Let's look at some cases.

A horizontal grid is a grid that allows us to show the information as if it were a

carrousel, that is to say, we can apply paging from the right and the elements will

move horizontally, to the left.

To make a grid display its content horizontally, i.e. in carrousel format, we need to

set the Custom Render property to HorizontalGrid.

By assigning this value, a series of properties will be enabled through which we will

be able to configure how the grid will look like. For example, the Show Page

Controller property determines if the pager will be displayed or not; the Page

Controller Class property will allow us to define the class on which this pager is

based.

This class is like a template to which we can change properties and all controls

based on the class will inherit these values.

There is a certain parallelism with the concept of domain that we saw before. By

changing the values of the properties of a class, we will be able to customize all the

controls that are based on it.

These classes, which define the appearance and behavior of each control on the

screen, are grouped below the Theme object, which we will see later.

Returning to the properties that allow us to customize our horizontal grid, we see

that we can decide whether we want to see the grid’s arrows that we use to change

the record, define if the grid’s width can be changed, how it will be paged, etc.

Let's see an example of a grid of this type.

[Demo: https://youtu.be/b76ee3Iu3hQ]

Let's see a demo of how to configure a horizontal grid using the Custom Render

property.

To try it, we can use a web panel called ShowAttractions with a grid. More

specifically, it is a FreeStyleGrid, but the example is also valid for a standard grid.

To the grid we add the attributes AttractionName, AttractionPhoto, CityName and

CountryName, as well as a responsive table to improve alignment.

If we run this web panel… we can see the grid with its usual behavior. Now we set

the Custom Render property to Horizontal grid and run.

Note that just by doing this, the information is displayed horizontally, as in a

carrousel, showing one attraction at a time.

We also see the paging control of the carrousel and the arrows to the right and left

of the page. As we said, all this is can be configured from the Theme object.

Since we’re using Chrome, by pressing F12 we can select the screen size. By

selecting other devices we can see that the information is adjusted in a responsive

manner, even if we change its orientation.

https://youtu.be/b76ee3Iu3hQ

A flexible grid allows us to view information in a way that can be adapted to our

needs, and allows for greater content customization in the visualization of the

content, than allowed by the responsive behavior.

When we add photos, for example, we never know the length or width of each

element to be displayed. These elements should be automatically rearranged as

best as possible, depending on the screen size. For example, in the figure on the left

the photos show actions on the right, and in the figure on the right, in a smaller

screen, the elements were adjusted to the available width and the controls of the

photos were automatically placed below them.

To make a grid display its content in a flexible manner, we must set the Custom

Render property to FlexGrid.

By assigning this value, a series of properties will be enabled through which we will

be able to configure how the grid will look like.

The Flex Direction property allows you to change the direction in which items are

displayed on the screen, whether it is by row or inverted row, by column or inverted

column.

Flex Wrap sets how items will be arranged when they take more than the length of

a row and not all of them can be displayed. The Wrap value arranges them in the

following line.

Justify Content allows us to set how content will be aligned. It can be from left to

right, from right to left, centered; also, the gap can be adjusted to take the entire

available width, or spaces can be added between elements.

The Align Items property allows us to select how the items are aligned in the rows.

Align Content allows us to align the row when there is extra space in the container.

Instead of showing the grid contents with paging, we may want to load the lines as

we scroll, on the same page.

[Demo: https://youtu.be/jWNAkRXwGw0]

For this demo, we’ve added some attractions. If we open “work with Attractions”, we

can see 10 attractions displayed on the page, and at the bottom of the page there is

a paging control. Pressing on the Next button shows 4 more attractions.

To change the default value from 10 to 5 records per page, we open the

WorkWithAttraction pattern instance, click on the Selection node, in the property

Rows per page we select <custom>, and in the property Custom Rows we select

the value 5.

We press F5….And see that the attractions are separated in 3 pages.

If we needed to review information of the attractions and instead of 14 attractions we

had 1000, even leaving the default value of 10 records per page, there would be

many pages to review. It would be much easier if we could make the grid load the

records automatically, as we scroll down, without having to manually apply paging.

This is known as infinite scroll.

To obtain this behavior in the WorkWith pattern grid, we open the Selection node

and in the Paging mode property we select the value <infinite scrolling>. We

press F5 and see that the scroll bar is displayed in the grid, and that the paging

control is hidden. Moving the scroll bar shows the message "Loading..." to indicate

that the database records are being loaded. We can scroll indefinitely until showing

all the attractions loaded in the table.

If we want to change the number of records per page in a standard grid not included

in a Work With pattern, we need to change the default value of the Rows property,

which is 0, for the desired value. The value 0 equals to “unlimited” and makes all the

grid records visible at once.

We press F5… And see that the paging control disappears and the scroll bar does

https://youtu.be/jWNAkRXwGw0

not appear in the grid. The scroll appears on the page, because the grid is too long to be entirely

displayed, and the page makes us scroll. (Note: To view the image in a larger size than the default one,

edit the column AttractionPhoto, set its Auto Resize property to False and change the values of the

properties Height and Width).

To obtain infinite scroll in a standard grid not included in a Work With pattern, we set the Rows

property to a value other than 0 and change the Paging property to Infinite Scrolling.

In a Free Style grid, the default value of the Rows property is <unlimited> and this value cannot be

changed.

In a previous class we had seen that there are three types of Web Panels.

In these videos we have only seen the Web Page type, but there are Web Panels

that can be defined as components, for the case when part of a web page has to be

repeated in multiple web panels. When it is defined as a component, it can be

inserted in other objects with a web screen.

For example, suppose that the grid showing the attractions of the selected category

is repeated in several Web Panels.

So, it will be better to have a Web Panel of Component type with it and its entire

programming (for example, we have replaced the condition we had at the grid level,

with the Parm rule that receives a value in the CategoryId attribute that, as we know,

applies an automatic filter).

Then...

In the Web Panel where we initially had the attraction grid, we replace it with a Web

Component control.

Now we only need to indicate what object of Web Component type will be loaded

there.

We can do it through programming or through the Component control properties, as

we see above.

There we indicate the object that will be loaded, and the parameter we have to send

it. In this case, it is the value of the &CategoryId variable.

Now we also have to change the programming of the click event of the categories

grid. Once we have given the &CategoryId variable the value of the line category,

we need to have the Web Component created again inside the control, so that it can

receive the variable value in a parameter. To this end, we will use the Object

property at the programming level.

The Refresh() method exists at the component level. We will see it later after talking

about the events run in the GET.

If there is a Web Component inside a Web Panel, the events triggered and their

order are the expected ones. The following is triggered:

1. Start Event of the web panel

2. General Refresh event of the web panel

3. Refresh event of grid1

4. Load event of grid1

5. Component events (Start, Refresh, Refresh and Load of every grid found)

Next, if there is a user or control event at the component level, this event is run and

only the corresponding part of the component is refreshed. Here you will find more

information:

http://wiki.genexus.com/commwiki/servlet/wiki?22472,Event+Execution+Scheme,

The Refresh method at the Web Component level will trigger the Start, Refresh and

Load events of the web component, and will load its entire screen area again. Why

haven't we used it? Because of the parameter that we want to send the object that

we created there. The Refresh method will send, through a parameter, the value

that &CategoryId had when the Create operation was run (in this case it will be

when the GET was performed; that is to say, when the screen was drawn for the

first time). At that moment, the variable was empty.

We will not study this in detail here.

Sometimes we want to develop an application where an action in a component

causes a reaction in a different component of the screen

For example – we want to trigger an action in a web component when the user

selects a menu element that is located in a different component.

Since communication between web components is limited - the only possible

communication is from parent to children - global events allow us to establish

communication between web components that are not related.

[DEMO: https://youtu.be/D8akim-gRSQ]

Suppose there's a web application for an event. If we go to the component that

displays the sessions, clicking on the Favorite button will refresh a component that

shows all favorites, which is on the master page and has no direct relationship with

the component that is triggering it.

Let's see how to do this in GeneXus.

To achieve this, there is a new object called GlobalEvents. We can create as many

Global Events objects as we want; basically, it is an external object and we could

create GlobalEventsBackend, GlobalEventfrontend, etc. depending on how we want

to group them. Remember that they are global and therefore it is important to use

them with certain criteria and in an orderly manner so that they are not too intrusive.

Our GlobalEvent here mainly updates the number of favorites.

In this case, our Event does not receive parameters, but it is possible to implement

events that do; if it were necessary to send parameters they would continue defining

them, associated with the event, with their data types, etc. Then, when making the

invocation, the object that triggers the event is responsible for defining the

parameters, and all the components that implement the event or that listen to this

event will receive the parameters with this format.

How is this global event triggered? In this case, the Sessions component is used.

When the favorites image is clicked on, the toggle that shows the image in gray or

yellow is enabled, and the GlobalEvent is triggered.

Who receives/runs this GlobalEvent? That's our decision, and it can be done by any

component that can reasonably do it.

In our case, the component that shows the number of favorite events is doing it;

basically, this component implements GlobalEvents.UpdateFavoritesQuantity and

https://youtu.be/D8akim-gRSQ

here it will make the call needed to update the information, which could be a refresh, etc.

In short, if we had more than one component that needed to subscribe to this event, it is possible to do

so. For example, we might want to show favorites' information in different parts of the screens, and

when someone adds an event or session to their favorites, we could refresh different components,

each of them implementing Events.UpdateFavoritesQuantity.

For more information, read: http://wiki.genexus.com/commwiki/servlet/wiki?31167

http://wiki.genexus.com/commwiki/servlet/wiki?31167

