Final Overview

GeneXus 16

Final Overview GeneXus

GeneXus Objects

* Transactions
* Procedures
+ DataProviders

* Web Panels l

* Panels for Smart Devices

*+ Work with for Smart Devices I

Throughout this course we have focused on the main GeneXus objects that enable the implementation of the most
significant functionalities in a web application, besides having mentioned those that implement applications for
smart devices.

We have seen that, based on the Transaction type objects defined in the knowledge base we could build the data
model...

Final Overview GeneXus

. [Flight

Transaction Y
¥ Fiightid

Sa FlightDepartureAirportid

Airline

9 airlineld ¥ Attractionld Y Categoryld Sy FlightDepartureAirporthame
P AirlineName P AttractionName (P CategoryName Sy FlightDepartureCountryld
* AirlineDiscountPercentage & Countryld Q CustomerName Sy FlightDepartureCountryName
¢ CountryName ¢ CustomerLastName S¢ FlightDepartureCityld
& Categoryld o CustomerAddress S¢ FlightDepartureCityName
L3 CategoryName ® CustomerPhone ¥ Countryid Sa FlightArrivalAirportld
{aa] AttractionPhoto ¢ CustomerEMail Q CountryName Sy FlightArrivalAirportName
Cityld ® CustomerAddedDate -1{=| City Sy FlightArrivalCountryld
Z Airportld ¥ CityName ¥ cityid Sy FlightArrivalCountryName
§’ AirportName P CityName S¢ FlightArrivalCityld
Countryld Sy FlightArrivalCityName
¥ CountryName ® FlightPrice
2 Cityld » FlightDiscountPercentage
¥ CityName 2 Airlineld
¢ AirlineName
¥ AirlineDiscountPercentage
; FlightFinalPrice
/a, FlightCapadity

={=| Seat
J ¥ Flightseatid
- ¥ FlightseatChar
-

p FlightSeatLocation

We could build the data model...that is to say that the entities from reality and their attributes, together with the
way in which they relate to one another was later reflected on the creation of a database with its respective tables.
Such creation, as well as its subsequent reorganizations were handled by GeneXus, as developers were freed
from having to think at the physical level, that is, at the table level. So they could just focus on viewing the data at
the highest level, more specifically, the level of transactions and their attributes.

Final Overview GeneXus

GeneXus Objects

+ Transactions ’_—_\

* Procedures

+ DataProviders _—_\)

* Web Panels _} ‘ l
* Panels for Smart Devices _____-—-——-—/‘) —1—

+ Work with for Smart Devices /

All the other objects we see here could then access the tables of the database to query or to also update
information. But the details on such access are disguised in GeneXus, for it is in charge of relating attributes and
transactions with database fields and tables. In this course, we have shown how this is done, but we need not
know this at all.

But even when we have confirmed that the GeneXus philosophy implies that we can forget about tables to
concentrate our thinking on the attribute and transaction levels, throughout the course we have gone to the
database tables over and over again to explain each of the concepts were considering. In fact, this is opposite to
the referred philosophy, which, again, implies the contrary, that is make developers independent from the storage
details and the implementation so that they may think and express themselves at higher levels. This would be the
case with individuals who are not fully proficient about computer programming, though capable of expressing a
reality that is to be modelled. Such form of expression only calls for transactions and attributes, and it requires no
tables. Why did we continue to go to the tables then? The reasons we had for it were basically founded on
learning purposes.

But now the time has come to question all this.
Despite the fact that all these objects could access the application’s data, to do so, we never mentioned tables

explicitly in any of them. What we did was name attributes and base transactions. And this the manner in which
developers are expected to work.

Final Overview GeneXus

GeneXus objects, types, commands, groups, grids, formulas

+ Transactions \

Business Component

)

* Procedures /\ * Foreach
|

» DataProviders /\ +_,l [\ + New

+ Web Panels e— N \ + Delete

* Panels for Smart Devices

*+ Work with for Smart Devices /

+ Data Provider group

Grid

(71

Formulas

Here we added the data types, commands and other aspects that enabled, in the various objects, the access to
data, both for just querying as well as for updating it.

Business Components were a sort of structured data types built on transactions, from which they took the data
structure and their rules and events, though with no screens or anything associated with them.

Final Overview GeneXus

Business Components

* InsertCategoryUpdateAttractions © X v

Layout | Rules | Conditions | Vanables

—
Sdbagamtalp tegoryName = “"Tourist Site” =
Scat .Insert E
9] 3
N
If 8cat .Success()
For each Attraction
Where CityName = “Beijing” and CategoryName = “Monument”
8 """""‘.'.cad(-ltt"acticnld) e F
W Categoriesindiaractions ® X
L3 tPITTIOWI T tegoryld = & .Categoryld
50 te————ipdate () e onditions snables
endfor Do
Commit -
endif th!r!:','.-vt * "Tourist Site” 5
nsert()

<

g" and Cotegorylase =
id)
4= -Categoryld

find(Categoryld, CotegoryName = “Monument™)

This was how Business Components were associated with variables, allowing —through methods— us to work with
database without the need for thinking about physical tables. They were like a mirror for the transactions, though
operating by code.

Since they were used through variables, they could be applied to several GeneXus objects (for example, in the
Source of procedures or in events of web panels).

Final Overview GeneXus

Business Components

& Attraction X -
[structure MR' Events | Variables | Pattems | &attraction.Attractionld = ...
ame e escription ormula ullable . -
s T —— Sattraction AttractionName = ...
;::M:mg - B - &attraction.Countryld = ...
» Countryld 1d Country 1d No &attraction.Categoyld = ...
¢ CountryName Name Country Name - - S
¥ G vy i - &attraction.AttractionPhoto = ...
¥ CategoryName Name Category Na... &attractlonCrtyld =
Lel AttractionPhoto Image Attraction P... No =
» Gityld 1d Gty d Yes &attracion.Save()
¥ CityName Name City Name

Inserting information with the use of a business component is exactly the same as doing it through the associated
transaction (though without its screen). We should recall that data integrity is controlled and the transaction rules
are also executed.

Final Overview GeneXus

Business Components

3 Fiight
¥ Fightid
Sa FightDepartureAirportld
S¢ FightDepartureAirportName
Sy FightDepartureCountryld

e &flight.Flightld =
i —" &flight.FlightDepartureAirportld =

S¢ FightArrivalAirportName
S¢ FightArrivaiCountryld

e &flight.Seat. Add(&flightSeat)
Crowa &flight.Save()

* FightDiscountPercentage
2 Arlineld
¢ AriineName
¥ AriineDiscountPercentage
)l FightFinalPrice
A, FightCapacity

Seat

¥ FightSeatid

¥ FightSeatChar

)’ FlightSeatiocation

Even when we did not consider it in this course, a business component may have two levels when the transaction
has two levels. As an example of this we have the Flight transaction.

Final Overview GeneXus

GeneXus objects, types, commands, groups, grids, formulas

+ Transactions /\

Business Component

)

* Procedures /\ /\ For each
- DataProviders /\ +—*: . New
« WebPanels ————" l | S + Delete

* Panels for Smart Devices —/
» Work with for Smart Devices ———-—J

« Data Provider group

Grid

@

Formulas

The For each command is one of the main commands in GeneXus, since it may be used for almost any object.

It is meant to go over each element in a transaction’s level, meaning an actor from reality, if we consider each
levelin the transaction as an actor.

Final Overview GeneXus

Transaction = b
Airline [E Attraction)

Sa FlightDepartureAirportid

9§ Airlineld ¥ Attractionid ; Y categoryd Sy FlightDepartureAirporthame
P AirlineName P AttractionName 9 customerld CategoryName S, FlightDepartureCountryld
* AirlineDiscountPercentage & Countryld P CustomerName Sy FlightDepartureCountryName
¢ CountryName ® CustomerLastName S FlightDepartureCityld
& Categoryld o CustomerAddress S¢ FlightDepartureCityName
i CategoryName ® CustomerPhone S FlightArrivalAirportld
[.7.} AttractionPhoto ® CustomerEMail Q CountryName Sy FlightArrivalAirportName
Cityld ® CustomerAddedDate -1{=| City Sy FlightArrivalCountryld
po ¥ CityName ? Cityld Sy FlightArrivalCountryName
¥ Airporthame P cityName S FlightArrivalCityld
Countryld S¢ FlightArrivalCityName
¥ CountryName * FlightPrice
2 Cityld * FlightDiscountPercentage
¥ CityName # Airlineld

¢ AirlineName

¥ AirlineDiscountPercentage
; FlightFinalPrice

/o, FlightCapacity

={=| Seat
‘/ ¥ Flightseatid
> ¥ FlightSeatChar
-~

Q FlightSeatLocation

For instance, each tourist attraction, or each flight, or each seat on a flight, or each country, or each city, etc., for
which something is to be done with its information.

Final Overview GeneXus

Foreach
b — -

. For each BaseTransaction Base table
. order Att], Att2, ..., Attn X
. where condition] t
. where condition2
. e
. where conditionn n
. MainCode
. endfor d

e

—

As we studied it, we saw that we indicated the base transaction but never the associated table. That associated
base table was inferred by GeneXus, and it was important only to know all al the information we could have from
it, that is: with the extended table, which is indeed a basic concept.

Final Overview GeneXus

Foreach
=3 Fight

? Fighttd

Sa FightDepartureAirportld

S¢ FightDepartureAirportName

Sy FightDepartureCountryld

Sy FightDepartureCountryName

S FightDepartureCityld . For each Flight Base table

5 tDepartureCityName

e . order Attl, Att2, ..., Attn
Sy FightArrivalAirporthame
Sy FightArrivaiCountryld
% FightArivalCountryltame . where condition2
Sy FightArrivalCityld

S FightarrivalCityName .

o FightPrice .
* FightDiscountPercentage . where conditionn

Arineld .
G ks . MainCode
¢ ArineDiscountPercentage . endfor
. FightFinalPrice
i, FightCapacity

Seat

¥ FightSeatid

¥ FightSeatChar

P FiightSeatiocation

. where conditionl

O ® Q3 M® X m

In other words, we indicate to the For each the level of the transaction with which we want to work, and it is from
there that the extended information is to be deduced. This information might not be included in the structure of the
transaction, but is may be “reached” based on the relations between entities. For example...

Final Overview GeneXus

Foreach

o= gt For each Flight
. print FlightData

Sa FiightDepartureAirportld

o PO Sritne b endfor
Sy FlightDepartureCountryld

S¢ FightDepartureCountryName

Sy FiightDepartureCityld

S¢ FlightDepartureCityName Name
Sp FlightArrivalAirportid —
Sy FightArrivalAirporthame =) {34 Airline]
Sy FlightArrivalCountryld ? Airlineld
Sy FiightArrivalCountryName . A'rhneName

Sy FlightArrivalCityld
¢ AirlineLogo

S¢ FiightArrivaiCityName
¢ AirineDiscountPercentage

Base table

* FlightPrice
¢ FlightDiscountPercentage

O ® Q3 M® X m

& Airineld

¥ AirineName 1

e —— For gach Fllght

L. FightFinaPrice print FlightData

l, FightCapacity foreach Flight.Seat
59“;@&,:1 ’ print lines

9 FightseatChar endfor

(P FightSeatLocation endfor *

...if the airline had an attribute that saves the logo, even when we have not specified it in the structure of the Flight
transaction because we did not need it there at all, it is absolutely possible to “reach” AirlineLogo by means of a
For each with the Flight base transaction. In other words, for each flight, the logo of its airline is found. And, for
example, we may print it along with the rest of the flight information. This is nothing but the significant concept
known under the name of extended table.

So, what is really important in a For each is not so much the base table, but rather the extended table that we
obtain from it, which in turn is obtained from the only indication made by the developer, that is: the base
transaction.

It is in fact important to point out that, with a For each like the one referred above, we will only navigate the
headers of flights, and not its lines. Lines may not be reached by the For each. To navigate lines we must nest
another For each, with Flight.Seat as the base transaction.

Final Overview GeneXus

GeneXus objects, types, commands, groups, grids, formulas

« Transactions /_\ /\ » Business Component

* Procedures *+ Foreach

+ DataProviders oo +: [\ '
+ Web Panels ———————" —’Il \ + Delete
* Panels for Smart Devices —Y _ + Data Provider group

+ Work with for Smart Devices __J &/ + Grid

Formulas

New

The New and Delete commands were briefly introduced, for they are at a lower level since they do not function at
the extended table level but at the base table level instead. The New inserts a record in the table and the Delete
eliminates records. This is why —due to their scarce degree of abstraction and expressiveness, and because they
are not much integrated in relation to transaction rules- the use of business components is recommended instead
of these commands.

Then, there is the Data Provider group, analogous to a For each. And the same goes for a grid with attributes.

Regarding formulas, also in this case we saw that we never mentioned a table from the database. We always use
attributes, and it is from them that GeneXus obtains the information that we want to navigate and the way to do it.
Developers must continue to think about higher level aspects, according to our reality, which is created by the
transactions and their attributes.

Final Overview GeneXus

-

. Dynamic
v Transaction

Transaction

: : Data Provider True
| 1. Insert, Update, Delete data ! - ==
i 2. Navigate (retrieve) data Update Policy *

And there is more: we had seen that transactions may create physical tables, which is the regular behavior. Or,
they may not create tables and take the data declared in their structure from other tables, form other external
databases or from other sources. We just mentioned the case of dynamic transaction. These transactions will be
totally equal to the usual transactions, except that the data we will see on screen, based on which we will be able
to navigate in the usual manner, is to be loaded through a Data Provider, every time. However, this will not be
visible to the user.

And, to a certain degree, it will also remain transparent for the developer ...

Final Overview GeneXus

it tB i

Attraction gt e
Y Attractionld ’
?’ AttractionName ™,
» Countryld ‘ /
¥ CountryName 4
& Categoryld

¥ CategoryName
{aa| AttractionPhoto
& Cityld

¥ CityName \

. Dynamic
v Transaction

For each Attraction order CountryName
where AttractionName >= &NameFron

where AttractionName <= &NameT

print Attractions 'Brma@?
endfor IS . S

Mirs AttrachonName CountryName

AnracthonPho

... If Attraction were a dynamic transaction whose data is taken from external services. For instance, nothing will
stop us from using it as if it were a regular transaction with an associated physical table.

So, if we want a For each to list the attractions, we will continue implementing it just as we did before.

This enables us to better understand what we mean by saying that, in GeneXus, we break away from the physical
implementation part. We work at a higher level, with information taken from a more conceptual viewpoint,
regardless of where it is stored.

Therefore, every time that we mentioned the “physical table” in the course, the idea was to make understanding
easier at the time. Now we know that this is not necessarily the case, and that tables may be a virtual that enable
us to think, but their implementation may vary. At this level, it is not really important where the data is located.

In fact, most of the applications we will develop will create and manage their own database, though others will not.
There are applications built to work with data provided by external databases, or even data provided by third
parties, whose storage sources are unknown.

GeneXus is prepared to deal with all this because it works with a very high level language. And that is what we
showed in this presentation.

GeneXus’

The power of doing.

Videos training.genexus.com
Documentation wiki.genexus.com
Certifications training.genexus._com/certifications

