
GeneXus Core Course
Considerations for Angular

Version: GeneXus 18

Considerations for Angular applications

We recommend following the GeneXus Core Course as it is set up; that is, with a Web front-end
(.NET) approach.

However, for those who want to map to Angular Web development as they watch the videos,
here are the relevant considerations for each video, with the caveat that this may be confusing
and it may be better to complete the course as is.

This is complementary material; it has no effect on the Core Course exam or any other part of
the course.

Contents

First steps.. 2

Transactions.. 3

Lists and access to data by code...5

Communication between objects...7

Structured Data Types and Data Providers... 9

Database update... 9

Architecture..14

Web screens with Back-office focus.. 14

Screen design and modeling... 14

First steps
“Creation of the Knowledge Base”
If you also want to create a front end in Angular, in the creation window select the Web
(Angular) check box, in addition to the default .NET.

If you don’t do this now when creating the KB, you can do it later.

www.genexus.com | 2

https://training.genexus.com/en/learning/courses/genexus/v18/core
https://training.genexus.com/en/learning/courses/genexus/v18/core/content/creation-of-the-knowledge-base-6104687

Transactions

“Designing the First Transaction”

The transaction object has a front-end part (that is executed on the client, such as its screen)
and a back-end part (that will be executed on the server, such as accessing the database, for
example). The transaction object is only executed in full (front end and back end) when using
the Web front end (.NET, Java).

The “Web (Angular)” front end does not execute the transaction object, but it will be able to use
the back-end part of this object. It will be understood later in the course, when studying
Business Components, that they will be able to act as services exposed on the server. The
Work With Pattern screens will also be supported, and through there it will be possible to
implement a back office with Angular.

Since GeneXus automatically creates the application database from the transactions, even if we
are developing an application for Angular, the back-end part will be implemented in one of the
standard languages (.NET, Java). That’s why we will see the back end separately from the front
end, in this way:

In other words, when developing for Angular (both back-office and customer-facing
developments), .NET/Java must be used for the back end (with no need to use the front end of
that generator).

Therefore, to load data in the Customer transaction we will need a .NET/Java back office like
the one in the course video –and that's why we see the Web front end (.NET)– or ... use the
Work With pattern that will be studied several videos later.

“Running the application for the first time”

It is only valid for the web front end in Java/.NET, as explained at the end of the video.

www.genexus.com | 3

https://training.genexus.com/en/learning/courses/genexus/v18/core/content/designing-the-first-transaction-6104673
https://training.genexus.com/en/learning/courses/genexus/v18/core/content/running-the-application-for-the-first-time-6104681

“Attributes and domains”, “Related transactions”, “Transactions with more than one level”,
“Attribute nomenclature”, “Rules definition”.

It is important to understand all this because it has to do with database normalization, referential
integrity, the rules that will be applied to the data to be entered, and the data itself and its tables.

“Using Patterns”

The pattern for Angular applications is not the one shown in this video (“Work With for Web”),
but the general “Work With” (which in previous versions of GeneXus was called “Work With for
Smart Devices”), which is also valid for native mobile applications. This specific video for
Angular is attached for you to watch after this one.

If you apply the “Work With” pattern to Attraction, in order to execute it in Angular you must
access the properties of theWorkWithAttraction object created by the pattern and set the
“Main program” property to True. Next, from that object, right-click and select Run.

The Angular generator development team has not completely developed it yet, so what you will
see is simpler than the Work With of Web applications (.NET/Java).

While it doesn't exist as an executable object for Web (.NET/Java), it does for Angular and
mobile applications.

● In Web (.NET/Java) everything is configured from the tree shown in the video.
● In Web Angular everything will be programmed as if it were an independent object.

As a result, the way of implementing the Work With screens is different in each case.

You will notice that once the “Work With” pattern is applied to the transaction object (in this
case, Attraction), the Business Component property is automatically turned on. Later on, you
will understand why; for now, just take note of it.

“Base and Extended table”, “Definition of Subtypes”

They are valid exactly as they are.

“Defining Attributes as Formulas”

Although we could think that this will not be valid for Angular since no transaction object is
generated there (instead, it will be executed in silent mode as a Business Component), and
therefore nothing of what is shown running in this video will be seen in Angular, actually the
definition of formula attributes applies at the transaction structure level, which means that it
applies at the data model level. Therefore, the formulas will be valid in all platforms. The
difference will be in the time when they will be calculated. However, the logic is exactly the same
as presented here, on all development platforms. In fact, when later on we see how to run
through a table and list its information, we will see how there the formula will be triggered

www.genexus.com | 4

https://training.genexus.com/en/learning/courses/genexus/v18/core/content/attributes-and-domains-6104679
https://training.genexus.com/en/learning/courses/genexus/v18/core/content/related-transactions-6104713
https://training.genexus.com/en/learning/courses/genexus/v18/core/content/transactions-with-more-than-one-level-6104683
https://training.genexus.com/en/learning/courses/genexus/v18/core/content/attribute-nomenclature
https://training.genexus.com/en/learning/courses/genexus/v18/core/content/rules-definition-6104751
https://training.genexus.com/en/learning/courses/genexus/v18/core/content/using-patterns-6104753
https://training.genexus.com/es/permalink/10506
https://training.genexus.com/en/learning/courses/genexus/v18/core/content/base-and-extended-table
https://training.genexus.com/en/learning/courses/genexus/v18/core/content/definition-of-subtypes-6104723
https://training.genexus.com/en/learning/courses/genexus/v18/core/content/defining-attributes-as-formulas-6104727

automatically for each record without us having to do anything. The definition of a formula
attribute is a logical definition that has implications for the database and the entire KB.

“Rule Triggering Events in Transactions”

While at first glance it may seem that this will not apply to Angular, actually the rules will also be
executed when the transaction is executed without the screen, i.e. when its information is
handled through the Business Component.

“Indexes”, “Normalization of Tables: A Case Study”, “Relations between actors of reality”, “1 to 1
relations between actors from reality”, “Exporting and Importing GeneXus Objects”.

They are valid exactly as they are.

Lists and access to data by code

“Lists and For each command to query the database”

If you follow the video exactly as it is, you will see that the list will open in the .NET front-end
URL, and not in that of Angular.

For the list to be executed inside the Angular front end, you have to do the following:

● Leave the “Call protocol” property with the default value, Internal.
● From an Angular panel (it can be WorkWithAttraction), add a button to invoke the

procedure.

And in the Events tab add what is shown below:

www.genexus.com | 5

https://training.genexus.com/en/learning/courses/genexus/v18/core/content/rule-triggering-events-in-transactions-6104715
https://training.genexus.com/en/learning/courses/genexus/v18/core/content/indexes-6104719
https://training.genexus.com/en/learning/courses/genexus/v18/core/content/normalization-of-tables-a-case-study-6104745
https://training.genexus.com/en/learning/courses/genexus/v18/core-topics/~22433/relations-between-actors-of-reality-6104717
https://training.genexus.com/en/learning/courses/genexus/v18/core/content/1-to-1-relations-between-actors-from-reality-6104725
https://training.genexus.com/en/learning/courses/genexus/v18/core/content/1-to-1-relations-between-actors-from-reality-6104725
https://training.genexus.com/en/learning/courses/genexus/v18/core/content/exporting-and-importing-genexus-objects-6104711
https://training.genexus.com/en/learning/courses/genexus/v18/core/content/lists-and-for-each-command-to-query-the-database-6104762

Where:
o The &pdf_url variable must be of the Url domain (url, GeneXus:Domain).
o “AttractionsList.pdf” is the name given to the PDF generated by the AttractionsList

procedure, since the rule was specified there:
Output_file(“AttractionsList.pdf”, “pdf”);

● Run this WorkWithAttraction panel object (which must have the “Main program” property set
to True) with right-click / Run. From there, when the panel is loaded in the browser, press the
button to print the PDF.

● Explanation for those who are more advanced:
● The invocation to the procedure, AttractionsList(), asks for the procedure to be

executed (and this will be done on the server). GeneXus will have set the “Expose as
Web Service” property of the procedure to expose it as a Rest service, so that it can
be invoked from the client. This will be understood when studying the architecture of
Angular applications.

● As the procedure has the Output_file rule, the result will be saved on the server as a
file named AttractionsList.pdf (the one indicated in the output_file rule).

● Since we want this file to be opened by the Angular front end, we must ask the front
end to open the resource (in this case, the PDF). To do so, we must first indicate the
URL on this server, which is what we put together in the second statement of the
event (the ApplicationServerURL property of the Network external object will return
the URL where the Rest services are located).

● To open a resource, the Interop.Open(...) method is available. Interop is an external
object that comes in the GeneXus module (look for it below the References node).

“How to process related information”, “How to process grouped information”, “Inline Formulas”

The same considerations: to run these procedures, you will have to do the same as in the
previous case. Since there is no major difference between using the Web (.NET) front end and
the Angular front end for this, we suggest running it as shown in the videos (Web .NET front
end).

www.genexus.com | 6

https://training.genexus.com/en/learning/courses/genexus/v18/core/content/how-to-process-related-information-6104766
https://training.genexus.com/en/learning/courses/genexus/v18/core/content/how-to-process-grouped-information-6104758
https://training.genexus.com/en/learning/courses/genexus/v18/core/content/inline-formulas-6104764

If you want to do it in Angular anyway, you can create a Panel object and in the Layout place as
many buttons as Procedures you need to invoke. The variable that will contain the URL
(&pdf_Url) must be defined with the Based on property with the “Url” domain.
You must change the Main Program panel property to True, and then you can run it simply with
right-click/Run on the panel.

Communication between objects

“Invocations between objects”, “Invocations between objects (cont.)”

The Web Panel for Angular analog will be the Panel. For the sake of simplicity, we recommend
following the videos as shown here, for Web Panels and not for Panels.

An option to run in Angular the first panel of the first video, EnterAttractionsFilters:

www.genexus.com | 7

https://training.genexus.com/en/learning/courses/genexus/v18/core/content/invocations-between-objects-6104721
https://training.genexus.com/en/learning/courses/genexus/v18/core/content/invocations-between-objects-cont--6104739

Set the panel as “Main program” and make sure that the AttractionsList proc has the value
“Expose as web service” = True, “Rest Protocol” = True and “Call protocol” = Internal.

A better way to implement this so that we don't have to remember the name given to the PDF
within the procedure is to also pass it by parameter:

www.genexus.com | 8

Thus, in the AttractionsList procedure:

Additional observations:

When you call an object directly by its name and the list of parameters in brackets, it is as if you
were writing the Call method (or Udp if the object returns a parameter). But there are other ways
to invoke them, for example, with the Link method. Now we will not dwell on their similarities and
differences, we will just name it.

Structured Data Types and Data Providers

“Structured Data Types”, “Variables that save data collections in memory”, “Loading Structured
Data Types (SDTs) using Data Providers”

All this is very important for all platforms and applies exactly the same. The consideration is the
same as we saw in the previous lists (how to view a PDF list in Angular front end). We suggest,
as before, to follow the videos as they are, in Web front end (.NET).

www.genexus.com | 9

https://training.genexus.com/en/learning/courses/genexus/v18/core/content/structured-data-types-6104741
https://training.genexus.com/en/learning/courses/genexus/v18/core/content/variables-that-save-data-collections-in-memory-6104743
https://training.genexus.com/en/learning/courses/genexus/v18/core/content/loading-structured-data-types-sdts-using-data-providers-6104733
https://training.genexus.com/en/learning/courses/genexus/v18/core/content/loading-structured-data-types-sdts-using-data-providers-6104733

Database update
These videos are essential, even more so in Angular, where we don't use the transaction as a
UI object.

“Database Update Using Business Components. Justification”

When we mention the rules that the Work With pattern added to the Attraction transaction, we
are referring to the pattern for Web, not the generic Work With pattern, which is the one valid for
Angular or native applications. Let's remember that in Angular and native applications, the
transaction object will not be executed. In fact, what will be used is what is being introduced in
this video; that is, the Business Component created from the transaction.

“Database Update Using Business Components”

First, make sure you understand the video as it is, and then read the following.

If when we studied the Work With pattern you created the pattern for Angular, then you will have
noticed that GeneXus automatically turned on the Business Component property of the
transaction and the interoperability ones shown in the image:

www.genexus.com | 10

https://training.genexus.com/en/learning/courses/genexus/v18/core/content/database-update-using-business-components-justification-6104768
https://training.genexus.com/en/learning/courses/genexus/v18/core/content/database-update-using-business-components-6104735

This happened because to be able to insert attractions, as well as to modify or delete through
the Work With screens, in Angular you don't call the Attraction transaction but the screen
corresponding to the General section, Edit layout.

www.genexus.com | 11

Those “attributes” that we see on the screen are not actually attributes. They are the elements
of the Business Component. When you click on the Save button, what will be done internally is
to call the Rest service corresponding to the Business Component, published on the server, to
perform the corresponding operation on the database. In short, from a client event, a call will be
made to a Rest service of the server, which is the one that will try to update the database
through the Business Component, and if it is successful, it will perform the Commit. The Rest
service will automatically try to perform this Commit.

The case is different if you want to use the BC from a procedure, because the procedure is
executed in the back end and there everything is identical to what was seen in the video.

To execute the InsertCategoryUpdateAttraction procedure, create a Panel with a Do button in
the layout and in the associated event write:

www.genexus.com | 12

Again: the procedure with “Call Protocol” = Internal. Note that when invoking the procedure from
the event, GeneXus automatically turns on the properties “Expose as Web Service” and “REST
protocol” of the procedure. We take advantage of this and invoke the Work With List to see how
the new attraction is listed.

When the Business Component is used inside a procedure, it is not necessary to execute it as a
Rest service (the Business Component, not the proc), because the procedure will be executed
on the server, and it is there that it will use the Business Component. For this reason, the
commits can be concatenated there as the developer wants, making them explicit. Everything
as seen in the video.

The final part of the video, where it says that BCs can be used not only in Procs but also in Web
panel events, is the part that will not be so identical in Angular, where it will have limitations.

“Database Update using Business Components. Example”

To do this in Angular, instead of the “CategoriesAndAttractions” Web Panel, create the analog
Panel (and set it as main to be able to run it with Run).

For the first part, when invoking the proc from the ‘Do’ event of the panel button, everything will
be identical (although note that the proc will automatically be exposed as a Rest service).

BUT: when in the middle of the video the procedure Source code is copied to the ‘Do’ event of
the Web panel, things will not work in the same way. That’s because when you do this in the
Web Panel, even if it is a client event, GeneXus internally moves this code to the server, and
executes it there.

For Panels this will not be the same. In the Panel, that code will be executed on the client, not
on the server. And, logically, on the client there is no access to the database. Assigning values
to the BC elements and even the Insert or Update operation will work, because for this the BC is
invoked as a Rest service. However, the result query with If will not work, not even If
&category.Success(), and even less the Commit or Rollback.

There are two alternatives to check the BC error in the client event:

www.genexus.com | 13

https://training.genexus.com/en/learning/courses/genexus/v18/core/content/database-update-using-business-components--example-6104770

1. If everything is done inside a Composite command, the error checking is done automatically
(this will be seen in the Angular course).

2. See the &err variable. Example:

&bc.insert()
if &err = 0
msg(‘Saved’, nowait)

else
msg(&errMsg, nowait)

endif

To perform the Commit or a Rollback there will be no other choice but to invoke a procedure that
performs it (which will always be executed on the server side). So, in the end it is convenient to
do everything in that procedure.

It will not be possible to use them in client events (executed in the front end), For each
commands, or formulas that access the database, such as find(CategoryId, CategoryName =
"Monument").

Therefore, these implementations in a Panel will have to be done by invoking procs in the
events (because they are executed on the server, they do have all the database access
commands available).

You will understand all this better when you watch, in the Architecture section, the video called
“GeneXus Applications Architecture” which is three videos ahead.

“Data Population using Business Components and Data Providers”

The Insert method for BC collection will not work at the client event level, so you will have to
include the entire event code in a procedure.

“Automatic data population”

The Data Provider created by GeneXus to populate the Category table with data (and the same
goes for Attraction) will be executed in the back end; that is, it will be generated in .NET in our
case. It is therefore independent of the front end. The .NET front end in the video is being used
only to display the entered data.

“Updating with procedure-specific commands. Introduction”

It is valid as is, taking into account that these commands that access the database can logically
only be executed on the server side, that is, in the back end.

www.genexus.com | 14

https://training.genexus.com/en/learning/courses/genexus/v18/core-topics/~22433/genexus-applications-architecture-6104776
https://training.genexus.com/en/learning/courses/genexus/v18/core/content/data-population-using-business-components-and-data-providers-6104774
https://training.genexus.com/en/learning/courses/genexus/v18/core/content/automatic-data-population-6104772
https://training.genexus.com/en/learning/courses/genexus/v18/core/content/updating-with-procedure-specific-commands-introduction-6104731

Architecture

“GeneXus Applications Architecture”

It is important to understand the differences in the architecture of an application whose front end
uses Web panels (.NET or Java) as opposed to one that uses Panels (Angular or native).

Web screens with Back-office focus
All the videos included here are for a Web front end (.NET or Java). Although the Web Panel
object is not used for Angular or native front end, part of the logic will be valid, with some
differences, for Panels, and here it is explained from scratch, so we suggest watching these
videos as carefully as the previous ones.
Then, in the Angular course you will study the specific features of Panels.

Screen design and modeling
UX Desing. Introduction

What we show in the video is for a Web front end (.NET/Java), but it is conceptually almost the
same as for any other front end. Some important differences:

● For the Web front end (.NET/Java), a Design System Object is defined that will apply by
default to all screens through a version property named Default Style. When a KB is
created, a DSO with the same name is created by default, and this DSO will import by
default everything that comes from the predefined one named UnanimoWeb:

www.genexus.com | 15

https://training.genexus.com/en/learning/courses/genexus/v18/core-topics/~22433/genexus-applications-architecture-6104776
https://training.genexus.com/en/learning/courses/genexus/v18/angular
https://training.genexus.com/en/learning/courses/genexus/v18/core/~26354/ux-design-introduction

● For the Angular front end, the way to indicate which DSO will command the layout of the
screens is from the platform properties. Here you can see that the default value is the
UnanimoAngular DSO, which comes predefined in the GeneXusUnanimo module.

We recommend that you follow this video as it is set up. You can also take this opportunity to
explore the UnanimoAngular DSO and try the WorkWithAttractions that you had applied for the
Attraction transaction for Angular.

Later on (not now), you may be interested in watching this webinar where we explain the first
steps to design from scratch some screens for a customer-facing Angular application, without
relying on any pre-existing DSO but creating one from scratch.

All the other videos of the Core course are valid as they are.

www.genexus.com | 16

https://training.genexus.com/en/learning/courses/genexus/v18/frontend-development/~25698

